On Roman balanced domination of graphs

被引:0
作者
Zhang, Mingyu [1 ]
Zhang, Junxia [2 ]
机构
[1] Shanxi Datong Univ, Sch Math & Stat, Datong 037009, Shanxi, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Fujian, Peoples R China
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 12期
关键词
Roman balanced dominating function; Roman balanced domination number; Rd-balanced graph;
D O I
10.3934/math.20241707
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph with vertex set V . A function f : V -> {-1, 0, 2} is called a Roman balanced dominating function (RBDF) of G if L E N G [ v ] f ( u ) = 0 for each vertex v E V . The maximum (resp. minimum) Roman balanced domination number gamma M Rb ( G ) (resp. gamma mRb ( G )) is the maximum (resp. minimum) value of v E V f (v) among all Roman balanced dominating functions f . A graph G is called Rd-balanced if gamma M Rb ( G ) = gamma m Rb ( G ) = 0. In this paper, we obtain several upper and lower bounds on gamma M Rb ( G ) and gamma m Rb ( G ) and further determine several classes of Rd-balanced graphs.
引用
收藏
页码:36001 / 36011
页数:11
相关论文
共 19 条
[1]   Triple Roman domination in graphs [J].
Ahangar, H. Abdollahzadeh ;
Alvarez, M. P. ;
Chellali, M. ;
Sheikholeslami, S. M. ;
Valenzuela-Tripodoro, J. C. .
APPLIED MATHEMATICS AND COMPUTATION, 2021, 391
[2]   Outer independent double Roman domination [J].
Ahangar, H. Abdollahzadeh ;
Chellali, M. ;
Sheikholeslami, S. M. .
APPLIED MATHEMATICS AND COMPUTATION, 2020, 364
[3]   Signed Roman domination in graphs [J].
Ahangar, H. Abdollahzadeh ;
Henning, Michael A. ;
Loewenstein, Christian ;
Zhao, Yancai ;
Samodivkin, Vladimir .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2014, 27 (02) :241-255
[4]   TOTAL ROMAN DOMINATION IN GRAPHS [J].
Ahangar, Hossein Abdollahzadeh ;
Henning, Michael A. ;
Samodivkin, Vladimir ;
Yero, Ismael G. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) :501-517
[5]   Strong Equality of Perfect Roman and Weak Roman Domination in Trees [J].
Alhevaz, Abdollah ;
Darkooti, Mahsa ;
Rahbani, Hadi ;
Shang, Yilun .
MATHEMATICS, 2019, 7 (10)
[6]   GLOBAL RAINBOW DOMINATION IN GRAPHS [J].
Amjadi, J. ;
Sheikholeslami, S. M. ;
Volkmann, L. .
MISKOLC MATHEMATICAL NOTES, 2017, 17 (02) :749-759
[7]   Global Roman Domination in Trees [J].
Atapour, M. ;
Sheikholeslami, S. M. ;
Volkmann, L. .
GRAPHS AND COMBINATORICS, 2015, 31 (04) :813-825
[8]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[9]   Perfect Roman domination in trees [J].
Henning, Michael A. ;
Klostermeyer, William F. ;
MacGillivray, Gary .
DISCRETE APPLIED MATHEMATICS, 2018, 236 :235-245
[10]   Roman domination and independent Roman domination on graphs with maximum degree three [J].
Luiz, Atilio G. .
DISCRETE APPLIED MATHEMATICS, 2024, 348 :260-278