Stochastic and deterministic parabolic equations with bounded measurable coefficients in space and time: Well-posedness and maximal regularity

被引:1
作者
Auscher, Pascal [1 ]
Portal, Pierre [2 ]
机构
[1] Univ Paris Saclay, CNRS, Lab Math Orsay, F-91405 Orsay, France
[2] Australian Natl Univ, Math Sci Inst, Canberra, ACT 0200, Australia
关键词
Parabolic stochastic PDE; Cauchy problems; Lions operator; Square functions; Tent spaces; PARTIAL-DIFFERENTIAL-EQUATIONS; EVOLUTION EQUATIONS; CAUCHY-PROBLEMS; TENT SPACES; CONTINUITY; EXISTENCE; OPERATORS;
D O I
10.1016/j.jde.2024.11.038
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish well-posedness and maximal regularity estimates for linear parabolic SPDE in divergence form involving random coefficients that are merely bounded and measurable in the time, space, and probability variables. To reach this level of generality, and avoid any of the smoothness assumptions used in the literature, we introduce a notion of pathwise weak solution and develop a new harmonic analysis toolkit. The latter includes techniques to prove the boundedness of various maximal regularity operators on relevant spaces of square functions, the parabolic tent spaces Tp. Applied to deterministic parabolic PDE in divergence form with real coefficients, our results also give the first extension of Lions maximal regularity theorem on L-2(R+ x R-n) = T-2 to T-p, for all 1 - epsilon < p <= infinity in this generality. (c) 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org/licenses/by /4 .0/).
引用
收藏
页码:1 / 51
页数:51
相关论文
共 55 条
  • [1] Nonlinear parabolic stochastic evolution equations in critical spaces Part I. Stochastic maximal regularity and local existence*
    Agresti, Antonio
    Veraar, Mark
    [J]. NONLINEARITY, 2022, 35 (08) : 4100 - 4210
  • [2] Amenta A, 2014, OPER THEORY ADV APPL, V240, P1
  • [3] J. L. Lions' problem on maximal regularity
    Arendt, Wolfgang
    Dier, Dominik
    Fackler, Stephan
    [J]. ARCHIV DER MATHEMATIK, 2017, 109 (01) : 59 - 72
  • [4] Aronson DG., 1968, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V3, P607
  • [5] Hardy spaces of differential forms on Riemannian manifolds
    Auscher, Pascal
    McIntosh, Alan
    Russ, Emmanuel
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2008, 18 (01) : 192 - 248
  • [6] Auscher P, 2024, Arxiv, DOI arXiv:2406.15775
  • [7] Auscher P, 2023, Arxiv, DOI arXiv:2211.17000
  • [8] Auscher P, 2007, MEM AM MATH SOC, V186, pXI
  • [9] Auscher P, 2019, ANN SCUOLA NORM-SCI, V19, P387
  • [10] Auscher P, 2014, MATH ANN, V359, P863, DOI 10.1007/s00208-014-1019-5