The effect of Coriolis force on the coherent structures in the wake of a 5MW wind turbine

被引:0
作者
Manganelli, Felice [1 ]
Bernardi, Claudio [1 ]
Giannotta, Alessandro [1 ]
Leonardi, Stefano [2 ]
Cherubini, Stefania [1 ]
De Palma, Pietro [1 ]
机构
[1] Polytech Univ Bari, Dept Mech Math & Management, Via Orabona 4, I-70126 Bari, Italy
[2] Univ Texas Dallas, Dept Mech Engn, 800 W Campbell Rd, Richardson, TX 75080 USA
关键词
Dynamic Mode Decomposition; Large Eddy Simulation; Wind veer; TURBULENCE INTENSITY; PERFORMANCE; STABILITY; EDDIES;
D O I
10.1016/j.ecmx.2024.100830
中图分类号
O414.1 [热力学];
学科分类号
摘要
This study aims to investigate the effect of Coriolis acceleration on the coherent structures in the wake of the NREL-5MW wind turbine, using the Dynamic Mode Decomposition (DMD). The Coriolis acceleration induces an altitude-dependent lateral deviation of the incoming wind direction (veer), which can substantially affect the performance of wind turbines. Large eddy precursor simulations are carried out to generate turbulent inlet velocity profiles. The presence of a veer stretches the turbine wake and influences the dynamics of the coherent structures. We decompose the flow structures to extract a limited subset of relevant flow features that optimally approximate the original data sequence, using the Sparsity-Promoting (SP) version of the DMD algorithm to rank the most relevant modes. It is found that wind veer induces coherent structures with a spanwise velocity component of the same order of the streamwise one and oblique shape. Using proper orthogonal decomposition, we analyze the contribution of the coherent structures to the mean kinetic entrainment. We found that due to wind veer, shorter wavelength mode pairs contribute mostly to wake recovery. Finally, we derive a reduced order model using approximately 70 modes pairs, which reproduces the flow structure with 5%-7% error.
引用
收藏
页数:17
相关论文
共 57 条
[1]   Influence of the Coriolis force on the structure and evolution of wind turbine wakes [J].
Abkar, Mahdi ;
Porte-Agel, Fernando .
PHYSICAL REVIEW FLUIDS, 2016, 1 (06)
[2]   Influence of atmospheric stability on wind-turbine wakes: A large-eddy simulation study [J].
Abkar, Mahdi ;
Porte-Agel, Fernando .
PHYSICS OF FLUIDS, 2015, 27 (03)
[3]   An Analytical Model for the Effect of Vertical Wind Veer on Wind Turbine Wakes [J].
Abkar, Mandi ;
Sorensen, Jens Norkaer ;
Porte-Agel, Fernando .
ENERGIES, 2018, 11 (07)
[4]   Experimental study of the horizontally averaged flow structure in a model wind-turbine array boundary layer [J].
Cal, Raul Bayoan ;
Lebron, Jose ;
Castillo, Luciano ;
Kang, Hyung Suk ;
Meneveau, Charles .
JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2010, 2 (01)
[5]   Effects of Thermal Stability and Incoming Boundary-Layer Flow Characteristics on Wind-Turbine Wakes: A Wind-Tunnel Study [J].
Chamorro, Leonardo P. ;
Porte-Agel, Fernando .
BOUNDARY-LAYER METEOROLOGY, 2010, 136 (03) :515-533
[6]   Effects of the Subgrid-Scale Modeling in the Large-Eddy Simulations of Wind Turbines [J].
Ciri, U. ;
Salvetti, M. V. ;
Carrasquillo, K. ;
Santoni, C. ;
Iungo, G. V. ;
Leonardi, S. .
DIRECT AND LARGE-EDDY SIMULATION X, 2018, 24 :109-115
[7]   Large-Eddy Simulations of Two In-Line Turbines in a Wind Tunnel with Different Inflow Conditions [J].
Ciri, Umberto ;
Petrolo, Giovandomenico ;
Salvetti, Maria Vittoria ;
Leonardi, Stefano .
ENERGIES, 2017, 10 (06)
[8]   Dynamic-mode-decomposition of the wake of the NREL-5MW wind turbine impinged by a laminar inflow [J].
De Cillis, Giovanni ;
Semeraro, Onofrio ;
Leonardi, Stefano ;
De Palma, Pietro ;
Cherubini, Stefania .
RENEWABLE ENERGY, 2022, 199 :1-10
[9]   The influence of incoming turbulence on the dynamic modes of an NREL-5MW wind turbine wake [J].
De Cillis, Giovanni ;
Cherubini, Stefania ;
Semeraro, Onofrio ;
Leonardi, Stefano ;
De Palma, Pietro .
RENEWABLE ENERGY, 2022, 183 :601-616
[10]   POD-based analysis of a wind turbine wake under the influence of tower and nacelle [J].
De Cillis, Giovanni ;
Cherubini, Stefania ;
Semeraro, Onofrio ;
Leonardi, Stefano ;
De Palma, Pietro .
WIND ENERGY, 2021, 24 (06) :609-633