Shift spin photocurrents in two-dimensional systems

被引:0
作者
Hsu, Hsiu-Chuan [1 ,2 ]
Chen, Tsung-Wei [3 ]
机构
[1] Natl Chengchi Univ, Grad Inst Appl Phys, Taipei 11605, Taiwan
[2] Natl Chengchi Univ, Dept Comp Sci, Taipei 11605, Taiwan
[3] Natl Sun Yat Sen Univ, Dept Phys, Kaohsiung 80424, Taiwan
关键词
SEMICONDUCTORS; RESONANCE; SPLITTINGS; CYCLOTRON;
D O I
10.1103/PhysRevB.111.115413
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The generation of nonlinear spin photocurrents by circularly polarized light in two-dimensional systems is theoretically investigated by calculating the shift spin conductivities. In time-reversal symmetric systems, shift spin photocurrent can be generated under the irradiation of circularly polarized light, while the shift charge photoccurrent is forbidden by symmetry. We show that the k-cubic Rashba-Dresselhaus system, the k-cubic wurtzite system, and Dirac surface states can support the shift spin photocurrent. By symmetry analysis, it is found that, in the Rashba type spin-orbit coupled systems, mirror symmetry requires that the spin polarization and the moving direction of the spin photocurrent be parallel, which we name longitudinal shift spin photocurrent. The Dirac surface states with warping term exhibit mirror symmetry, similar to the Rashba type system, and support longitudinal shift spin photocurrent. In contrast, in the Dresselhaus type spin-orbit coupled systems, the parity-mirror symmetry requires that the spin polarization and the moving direction of the spin photocurrent be perpendicular, which we dub transverse shift spin photocurrent. Furthermore, we find that the shift spin photocurrent always vanishes in any k-linear spin-orbit coupled system unless the Zeeman coupling mu(z) is turned on. We find that the splitting of degenerate energy bands due to Zeeman coupling mu(z) causes the van Hove singularity. The resulting shift spin conductivity has a significant peak at optical frequency omega = 2 mu z/(h) over bar.
引用
收藏
页数:12
相关论文
共 50 条
[31]   Understanding spin Hall effect in two-dimensional fermionic systems with generic spin-orbit interaction in III-V heterostructures [J].
Paul, Boudhayan ;
Ghosh, Tarun Kanti .
PHYSICS LETTERS A, 2015, 379 (07) :728-731
[32]   Valley and spin dynamics in MoSe2 two-dimensional crystals [J].
Kumar, Nardeep ;
He, Jiaqi ;
He, Dawei ;
Wang, Yongsheng ;
Zhao, Hui .
NANOSCALE, 2014, 6 (21) :12690-12695
[33]   Electrical Generation of Pure Spin Currents in a Two-Dimensional Electron Gas [J].
Frolov, S. M. ;
Venkatesan, A. ;
Yu, W. ;
Folk, J. A. ;
Wegscheider, W. .
PHYSICAL REVIEW LETTERS, 2009, 102 (11)
[34]   Observation of the intrinsic spin Hall effect in a two-dimensional electron gas [J].
Hernandez, F. G. G. ;
Nunes, L. M. ;
Gusev, G. M. ;
Bakarov, A. K. .
PHYSICAL REVIEW B, 2013, 88 (16)
[35]   Spin-orbit interaction and transport in GaAs two-dimensional holes [J].
Habib, B. ;
Shayegan, M. ;
Winkler, R. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2009, 24 (06)
[36]   The influence of the Rashba spin-orbit coupling on the two-dimensional magnetoexcitons [J].
Hakioglu, T. ;
Liberman, M. A. ;
Moskalenko, S. A. ;
Podlesny, I. V. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (34)
[37]   Drude weight and optical conductivity of a two-dimensional heavy-hole gas with k-cubic spin-orbit interactions [J].
Mawrie, Alestin ;
Ghosh, Tarun Kanti .
JOURNAL OF APPLIED PHYSICS, 2016, 119 (04)
[38]   Nature of a Nonzero Frequency Shift of a Hyperfine Transition in Two-Dimensional Atomic Hydrogen [J].
Safonov, A. I. ;
Safonova, I. I. ;
Yasnikov, I. S. .
JETP LETTERS, 2009, 90 (01) :8-12
[39]   Spin distribution in the diffraction pattern of a two-dimensional electron gas with spin-orbit coupling [J].
Lin, Cheng-Ju ;
Chern, Chyh-Hong .
PHYSICAL REVIEW B, 2011, 84 (08)
[40]   Generalized spin-orbit torques in two-dimensional ferromagnets with spin-orbit coupling [J].
Yang, Chao ;
Wang, Zheng-Chuan ;
Zheng, Qing-Rong ;
Su, Gang .
EUROPEAN PHYSICAL JOURNAL B, 2019, 92 (06)