Locally finitely presented Grothendieck categories and the pure semisimplicity conjecture

被引:0
作者
Fazelpour, Ziba [1 ]
Nasr-Isfahani, Alireza [1 ,2 ]
机构
[1] Inst Res Fundamental Sci IPM, Sch Math, POB 19395-5746, Tehran, Iran
[2] Univ Isfahan, Fac Math & Stat, Dept Pure Math, POB 81746-73441, Esfahan, Iran
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2025年
基金
美国国家科学基金会;
关键词
Locally finitely presented category; Grothendieck category; pure semisimple category; HEREDITARY COALGEBRAS; DIRECT SUMS; RINGS; MODULES;
D O I
10.4153/S0008414X24000919
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate locally finitely presented pure semisimple (hereditary) Grothendieck categories. We show that every locally finitely presented pure semisimple (resp., hereditary) Grothendieck category $\mathscr {A}$ is equivalent to the category of left modules over a left pure semisimple (resp., left hereditary) ring when $\mathrm {Mod}(\mathrm {fp}(\mathscr {A}))$ is a QF-3 category, and every representable functor in $\mathrm {Mod}(\mathrm {fp}(\mathscr {A}))$ has finitely generated essential socle. In fact, we show that there exists a bijection between Morita equivalence classes of left pure semisimple (resp., left hereditary) rings $\Lambda $ and equivalence classes of locally finitely presented pure semisimple (resp., hereditary) Grothendieck categories $\mathscr {A}$ that $\mathrm {Mod}(\mathrm {fp}(\mathscr {A}))$ is a QF-3 category, and every representable functor in $\mathrm {Mod}(\mathrm {fp}(\mathscr {A}))$ has finitely generated essential socle. To prove this result, we study left pure semisimple rings by using Auslander's ideas. We show that there exists, up to equivalence, a bijection between the class of left pure semisimple rings and the class of rings with nice homological properties. These results extend the Auslander and Ringel-Tachikawa correspondence to the class of left pure semisimple rings. As a consequence, we give several equivalent statements to the pure semisimplicity conjecture.
引用
收藏
页数:27
相关论文
共 50 条
[1]  
ALBU T, 1991, OSAKA J MATH, V28, P295
[2]  
Anderson K. R., 1992, Grad. Texts in Math., V13
[3]  
ANH PN, 1987, TSUKUBA J MATH, V11, P1
[4]  
Auslander M., 1976, ALGEBRA TOPOLOGY CAT, P1
[5]  
AUSLANDER M, 1974, COMMUN ALGEBRA, V1, P269
[6]  
AUSLANDER M, 1995, CAMBRIDGE STUDIES AD, P36
[7]   QF-3 RINGS WITH ZERO SINGULAR IDEAL [J].
COLBY, RR ;
RUTTER, EA .
PACIFIC JOURNAL OF MATHEMATICS, 1969, 28 (02) :303-&
[8]   GENERALIZATIONS OF QF-3 ALGEBRAS [J].
COLBY, RR .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1971, 153 (JAN) :371-&
[9]   LOCALLY FINITELY PRESENTED ADDITIVE CATEGORIES [J].
CRAWLEYBOEVEY, W .
COMMUNICATIONS IN ALGEBRA, 1994, 22 (05) :1641-1674
[10]  
Drozdowski G., 1979, Bull. Acad. Pol. Sci., Ser. Sci. Math., V27, P33