Thermal conductivity of compressed SiO2 nanoglasses. A molecular dynamics study

被引:0
作者
Hul, Anton [1 ]
Keblinski, Pawel [2 ]
Pietrzak, Tomasz K. [1 ]
机构
[1] Warsaw Univ Technol, Fac Phys, Koszykowa 75, PL-00662 Warsaw, Poland
[2] Rensselaer Polytech Inst, Mat Sci & Engn Dept, Troy, NY USA
关键词
Nanoglasses; Glassy oxide nanoparticles; Silicon oxide; Thermal conductivity; Green-Kubo; Direct method; SILICA; KIND;
D O I
10.1016/j.ijheatmasstransfer.2025.126761
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nanoglasses synthesized by consolidating amorphous nanoparticles under pressure may exhibit significantly altered properties, for example greatly improved ductility, as compared to pressure-treated bulk glasses of the same composition. In this work, using molecular dynamics simulations, we examined the relationship between thermal transport and pressure treatment parameters of silica nanoglasses. Surprisingly, within 8 and 16 GPa pressure treatment, the studied nanoglasses exhibit higher thermal conductivity than bulk glasses subjected to the same pressure protocols, despite the fact that they still have porosity. Our results indicate that overall nanoglass density is the primary factor determining the thermal conductivity while the porosity and other atomic/microstructural details do not have a negative effect on thermal transport. Our study demonstrate that such nanomaterials belong to a class of materials whose thermal properties can be tuned by engineering their microstructure with particle size and - mostly - high-pressure treatment.
引用
收藏
页数:7
相关论文
共 50 条
[41]   Enhanced Thermal Conductivity and Thermal Performance of Polyethylene Glycol (PEG)/Modified SiO2 Composite Phase Change Material [J].
Cui, Xuewei ;
Wang, Yao ;
Tang, Jianguo ;
Wang, Jiuxing ;
Jiang, Qianqian ;
Huang, Linjun ;
Liu, Jixian ;
Wang, Yanxin ;
Li, Haidong ;
Belfiore, Laurence A. .
SCIENCE OF ADVANCED MATERIALS, 2018, 10 (03) :309-314
[42]   Generation of glass SiO2 structures by various cooling rates:: A molecular-dynamics study [J].
Lee, Byoung Min ;
Baik, Hong Koo ;
Seong, Baek Seok ;
Munetoh, Shinji ;
Motooka, Teruaki .
COMPUTATIONAL MATERIALS SCIENCE, 2006, 37 (03) :203-208
[43]   Characterization of the structural response of a lithiated SiO2 / Si interface: A reactive molecular dynamics study [J].
Verners, O. ;
Simone, A. .
MECHANICS OF MATERIALS, 2019, 136
[44]   Thermal conductivity of Portlandite: Molecular dynamics based approach [J].
Sarkar, Prodip Kumar ;
Goracci, Guido ;
Dolado, Jorge S. .
CEMENT AND CONCRETE RESEARCH, 2024, 175
[45]   A Molecular Dynamics Study on Thermal Conductivity of Armchair Graphene Nanoribbon [J].
Khan, Asir Intisar ;
Navid, Ishtiaque Ahmed ;
Hossain, Fahim Ferdous ;
Noshin, Maliha ;
Subrina, Samia .
PROCEEDINGS OF THE 2016 IEEE REGION 10 CONFERENCE (TENCON), 2016, :2775-2778
[46]   Molecular dynamics study on thermal conductivity of nanoscale thin films [J].
Feng, XL ;
Li, ZX ;
Liang, XG ;
Guo, ZY .
CHINESE SCIENCE BULLETIN, 2001, 46 (07) :604-607
[47]   Thermal Conductivity of Silicene Nanoribbons: An Equilibrium Molecular Dynamics Study [J].
Jahan, Nusrat ;
Navid, Ishtiaque Ahmed ;
Subrina, Samia .
2018 4TH IEEE INTERNATIONAL WIE CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (IEEE WIECON-ECE 2018), 2018, :121-124
[48]   A Molecular Dynamics Study of Thermal conductivity in Monolayer GaN Nanoribbon [J].
Mamun, Md. Asaduz Zaman ;
Hasan, Mehedi ;
Mustakim, Nafis ;
Subrina, Samia .
PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, :52-56
[49]   Molecular dynamics simulation and mechanism study on thermal conductivity of alcohols [J].
Liu W. ;
Yang F. ;
Yuan H. ;
Zhang Y. ;
Yi P. ;
Zhou H. .
Huagong Xuebao/CIESC Journal, 2020, 71 (11) :5159-5168
[50]   Effect of fission products on the thermal conductivity of ThO2-A molecular dynamics study [J].
Wang, Ziqiang ;
Yang, Chen ;
Yu, Miaosen ;
Ma, Wenxue ;
Guo, Liyao ;
Wei, Zhixian ;
Gao, Ning ;
Yao, Zhongwen ;
Wang, Xuelin .
NUCLEAR MATERIALS AND ENERGY, 2024, 39