Thermal conductivity of compressed SiO2 nanoglasses. A molecular dynamics study

被引:0
作者
Hul, Anton [1 ]
Keblinski, Pawel [2 ]
Pietrzak, Tomasz K. [1 ]
机构
[1] Warsaw Univ Technol, Fac Phys, Koszykowa 75, PL-00662 Warsaw, Poland
[2] Rensselaer Polytech Inst, Mat Sci & Engn Dept, Troy, NY USA
关键词
Nanoglasses; Glassy oxide nanoparticles; Silicon oxide; Thermal conductivity; Green-Kubo; Direct method; SILICA; KIND;
D O I
10.1016/j.ijheatmasstransfer.2025.126761
中图分类号
O414.1 [热力学];
学科分类号
摘要
Nanoglasses synthesized by consolidating amorphous nanoparticles under pressure may exhibit significantly altered properties, for example greatly improved ductility, as compared to pressure-treated bulk glasses of the same composition. In this work, using molecular dynamics simulations, we examined the relationship between thermal transport and pressure treatment parameters of silica nanoglasses. Surprisingly, within 8 and 16 GPa pressure treatment, the studied nanoglasses exhibit higher thermal conductivity than bulk glasses subjected to the same pressure protocols, despite the fact that they still have porosity. Our results indicate that overall nanoglass density is the primary factor determining the thermal conductivity while the porosity and other atomic/microstructural details do not have a negative effect on thermal transport. Our study demonstrate that such nanomaterials belong to a class of materials whose thermal properties can be tuned by engineering their microstructure with particle size and - mostly - high-pressure treatment.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Practical approach to thermal conductivity calculations of small SiO2 samples [J].
Ndour, Mbaye ;
Jund, Philippe ;
Chaput, Laurent .
JOURNAL OF NON-CRYSTALLINE SOLIDS, 2023, 621
[22]   Parylene-coated SiO2 aerogel with controlled thermal conductivity [J].
Song, Zhiquan ;
Kim, Moon-Ju ;
Park, Jun-Hee ;
Yun, Tae Gyeong ;
Hwang, Seong-Ju ;
Kang, Min-Jung ;
Park, Hyung-Ho ;
Pyun, Jae-Chul .
MATERIALS TODAY COMMUNICATIONS, 2023, 36
[23]   Effect of Volume Fraction and Temperature on Thermal Conductivity of SiO2 Nanofluids [J].
Zhu, Baojie ;
Zhao, Weilin ;
Li, Dongdong ;
Li, Jinkai .
EMERGING FOCUS ON ADVANCED MATERIALS, PTS 1 AND 2, 2011, 306-307 :1178-1181
[24]   Measurement of thermal conductivity and viscosity of ZnO–SiO2 hybrid nanofluids [J].
Gökberk Yalçın ;
Semiha Öztuna ;
Ahmet Selim Dalkılıç ;
Somchai Wongwises .
Journal of Thermal Analysis and Calorimetry, 2022, 147 :8243-8259
[25]   Study of effective thermal conductivity of a novel SiO2 aerogel composite for high-temperature thermal insulation [J].
Okafor, Peter-Ebuka ;
Tang, Guihua .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 212
[26]   Scanning thermal microscopy method for thermal conductivity measurement of a single SiO2 nanoparticle [J].
Chen, Wencan ;
Feng, Yanhui ;
Qiu, Lin ;
Zhang, Xinxin .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 154
[27]   The effect of the addition of polypropylene-grafted SiO2 nanoparticle on the thermal conductivity of isotactic polypropylene [J].
Fukuyama, Yoshizo ;
Senda, Mari ;
Kawai, Takahiko ;
Kuroda, Shin-ichi ;
Toyonaga, Masahito ;
Taniike, Toshiaki ;
Terano, Minoru .
JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 117 (03) :1397-1405
[28]   The effect of the addition of polypropylene-grafted SiO2 nanoparticle on the thermal conductivity of isotactic polypropylene [J].
Yoshizo Fukuyama ;
Mari Senda ;
Takahiko Kawai ;
Shin-ichi Kuroda ;
Masahito Toyonaga ;
Toshiaki Taniike ;
Minoru Terano .
Journal of Thermal Analysis and Calorimetry, 2014, 117 :1397-1405
[29]   Preparation of nano-SiO2 building aerogel thermal conductivity coatings and study on the factors of thermal conductivity [J].
Liu, M. .
FUNCTIONAL MATERIALS, 2019, 26 (03) :541-547
[30]   Molecular Dynamics Study of Thermal Conductivity of Silver Chalcogenides [J].
Fukushima, Shogo ;
Shimamura, Kohei ;
Koura, Akihide ;
Shimojo, Fuyuki .
PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2020, 257 (11)