A Temperature-Dependent SPICE Model of SiC Power Trench MOSFET Switching Behavior Considering Parasitic Parameters

被引:0
作者
Shen, Pei [1 ]
Jiang, Yuan [1 ]
Zhang, Xiao-Dong [2 ]
Dai, Ji-Yang [1 ]
机构
[1] Nanchang Hangkong Univ, Sch Informat Engn, Nanchang 330063, Peoples R China
[2] Hainan Univ, Sch Appl Sci & Technol, Haikou 570228, Peoples R China
来源
IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY | 2025年 / 13卷
关键词
Semiconductor device modeling; Integrated circuit modeling; Mathematical models; MOSFET; Silicon carbide; Capacitance; Temperature; Numerical models; SPICE; Junctions; SPICE model; continuous function; parasitic parameters; temperature-dependent; SiC trench MOSFET; COMPACT MODEL; CAPACITANCE; EXTRACTION; TRANSIENT; ACCURACY;
D O I
10.1109/JEDS.2024.3498008
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The application of silicon carbide (SiC) MOSFETs in the field of high voltage and high frequency brings the major challenge of high switching loss. To give full advantage of its performance in high-frequency applications and provide a simulation analysis method for the analysis and design of power electronic systems, it is essential to establish simulation models of the SiC power MOSFET switching behavior suitable for different ambient temperatures. A temperature-dependent compact SPICE model considering parasitic parameters is proposed in this article, which uses only the parameters in the datasheet or provided by manufacturers. The main technology-dependent parameters are analyzed and discussed in detail, including the nonlinear parasitic capacitance, parasitic parameters of the power module, and static characteristic parameters. In static characteristics, a simple and continuous equation is used to describe the drain-source current of the SiC power MOSFET. The static characteristic parameters of the SPICE model were compared with the 1.2-kV SiC power MOSFET, manufactured by ROHM, Inc., (SCT3030KLHR). Subsequently, the dynamic characteristic is verified by comparing the simulation results with experimental results in a double pulse circuit employing the half-bridge module under different temperatures. Comparisons between the datasheet and experiments demonstrate the precision of the modeling methodology and the consistency of the results.
引用
收藏
页码:98 / 105
页数:8
相关论文
共 30 条
  • [1] Feng Z., Berry A., Ellis P., Lawson W., SPICE models for predicting EMC performance of a MOSFET based half-bridge configuration, Proc. IEEE 1st Int. Power Electron. Appl. Symp. (PEAS), pp. 1-5, (2021)
  • [2] Zhang B.Y., Wang S., A survey of EMI research in power electronics systems with wide-bandgap semiconductor devices, IEEE J. Emerg. Sel. Topics Power Electron., 8, 1, pp. 626-643, (2020)
  • [3] Turzynsk M., Wlodek W.J., A simplified behavioral MOSFET model based on parameters extraction for circuit simulations, IEEE Trans. Power Electron., 31, 4, pp. 3096-3105, (2016)
  • [4] Mantooth H.A., Peng K., Santi E., Hudgins J.L., Modeling of wide bandgap power semiconductor devices-Part I, IEEE Trans. Electron Devices, 62, 2, pp. 423-433, (2015)
  • [5] Sun J., Yuan L., Duan R., Lu Z., Zhao Z., A semiphysical semibehavioral SPICE model for switching transient process of SiC MOSFET module, IEEE J. Emerg. Sel. Topics Power Electron., 9, 2, pp. 2258-2270, (2021)
  • [6] Riccio M., D'Alessandro V., Romano G., Maresca L., Breglio G., Irace A., A temperature-dependent SPICE model of SiC power MOSFETs for within and out-of-SOA simulations, IEEE Trans. Power Electron., 33, 9, pp. 8020-8029, (2018)
  • [7] Dong Z., Wu X., Xu H., Ren N., Sheng K., Accurate analytical switching-on loss model of SiC MOSFET considering dynamic transfer characteristic and Qgd, IEEE Trans. Power Electron., 35, 11, pp. 12264-12273, (2020)
  • [8] Xiang P., Hao R., You X., A temperature-dependent SPICE model of SiC MOSFET short-circuit behavior considering parasitic parameters, IEEE J. Emerg. Sel. Topics Power Electron., 10, 5, pp. 4993-5006, (2022)
  • [9] Yang T., Li X., Yin S., Wang Y., Yue R., A datasheet-driven nonsegmented empirical SPICE model of SiC MOSFET with improved accuracy and convergence capability, IEEE Trans. Electron Devices, 70, 1, pp. 4-12, (2023)
  • [10] Yan L., Sharma K., Kallfass I., A compact model extending the BSIM3 model for silicon carbide power MOSFETs, IEEE Trans. Power Electron., 38, 4, pp. 4613-4622, (2023)