EXISTENCE OF POSITIVE SOLUTIONS FOR A GENERALIZED FRACTIONAL BREZIS-NIRENBERG PROBLEM

被引:0
作者
Kumar, Rohit [1 ]
Sarkar, Abhishek [1 ]
机构
[1] Indian Inst Technol, Dept Math, Jodhpur 342030, Rajasthan, India
关键词
Fractional Bre<acute accent>zis-Nirenb erg problem; critical Sobolev exponent; concentration compactness; principle of symmetric criticality; positive solutions; SYMMETRIC CRITICALITY; PRINCIPLE;
D O I
10.12775/TMNA.2024.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study the fractional Bre<acute accent>zis-Nirenb erg type problem on whole domain RN associated with the fractional p-Laplace operator. To be precise, we want to study the following problem: (P) (-Delta p)su - lambda w|u|p-2u = |u|p & lowast;s -2u in Ds,p(RN), where s is an element of (0, 1), p is an element of (1, N/s), p & lowast;s = Np/(N - sp) and the operator (-Delta p)s is the fractional p-Laplace operator. The space Ds,p(RN) is the completion of C infinity (RN) with respect to the Gagliardo semi-norm. In this article, we c prove the existence of a positive solution to problem (P) by allowing the Hardy weight function w to change its sign.
引用
收藏
页码:509 / 543
页数:35
相关论文
共 50 条
  • [31] Fine multibubble analysis in the higher-dimensional Brezis-Nirenberg problem
    Koenig, Tobias
    Laurain, Paul
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2024, 41 (05): : 1239 - 1287
  • [32] The Brezis-Nirenberg type problem for the p-Laplacian: infinitely many sign-changing solutions
    He, Tieshan
    He, Lang
    Zhang, Meng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2020, 59 (03)
  • [33] On the Location of Blow up Points of Least Energy Solutions to the Brezis-Nirenberg Equation
    Takahashi, Futoshi
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2004, 47 (01): : 145 - 166
  • [34] Uniqueness for the Brezis-Nirenberg Type Problems on Spheres and Hemispheres
    Abreu, Emerson
    Barbosa, Ezequiel
    Ramirez, Joel
    JOURNAL OF GEOMETRIC ANALYSIS, 2025, 35 (01)
  • [35] THE BREZIS-NIRENBERG TYPE DOUBLE CRITICAL PROBLEM FOR A CLASS OF SCHRODINGER-POISSON EQUATIONS
    Cai, Li
    Zhang, Fubao
    ELECTRONIC RESEARCH ARCHIVE, 2021, 29 (03): : 2475 - 2488
  • [36] Existence of solutions for the fractional Nirenberg problem with indefinite curvature functions
    An, Jiaxing
    Dou, Jingbo
    Hu, Yunyun
    BULLETIN OF MATHEMATICAL SCIENCES, 2024,
  • [37] Infinite solutions for a class of Brezis-Nirenberg equations with an indefinite linear and nonlinear terms in sign
    Bahrouni, Anouar
    APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (24) : 11198 - 11205
  • [38] Towers of Bubbles for Yamabe-Type Equations and for the Brezis-Nirenberg Problem in Dimensions n ≥ 7
    Premoselli, Bruno
    JOURNAL OF GEOMETRIC ANALYSIS, 2022, 32 (03)
  • [39] A spinorial analogue of the Brezis-Nirenberg theorem involving the critical Sobolev exponent
    Bartsch, Thomas
    Xu, Tian
    JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 280 (12)
  • [40] The Brezis-Nirenberg result for the Kirchhoff-type equation in dimension four
    Liao, Jia-Feng
    Ke, Xiao-Feng
    Liu, Jiu
    Tang, Chun-Lei
    APPLICABLE ANALYSIS, 2018, 97 (15) : 2720 - 2726