Impact of motions on floating wind turbine power production

被引:0
作者
Garcia-Sagrado, A. [1 ]
Schlipf, D. [2 ]
Brovia, S. Perez [2 ]
Burstein, J. [3 ]
Yoshinaga, T. [4 ]
机构
[1] Shell Global Solut Int BV, Carel van Bylandtlaan 16, NL-2596 HR The Hague, Netherlands
[2] Sowento GmbH, Hessenlauweg 14, D-70569 Stuttgart, Germany
[3] RWE Offshore Wind GmbH, RWE Pl 4, D-45141 Essen, Germany
[4] TEPCO Renewable Power Inc, 13th Floor Hibiya Kokusai Bldg,2-2-3 Uchisaiwai C, Tokyo 1000011, Japan
来源
SCIENCE OF MAKING TORQUE FROM WIND, TORQUE 2024 | 2024年 / 2767卷
关键词
D O I
10.1088/1742-6596/2767/6/062034
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Floating offshore wind opens new possibilities for harnessing wind energy in deeper waters where it is not feasible to install traditional fixed-bottom turbines. Accessing deeper waters enables the utilization of stronger and more consistent wind resources, potentially leading to higher energy production. However, one of the challenges of floating offshore wind is the impact of increased motions on floating turbine's power. This paper addresses this challenge by investigating wind field reconstruction and motion compensation algorithms when using a nacelle lidar to characterize floating turbine inflow wind speed. The fully instrumented TetraSpar floating demonstrator with a 3.6 MW wind turbine and a nacelle lidar, offers a unique opportunity to investigate the effect of motions on power production. Observations from real measurements are complemented with numerical simulations, highlighting that motion-compensating for mean tilt angle is an effective correction for 10 min average power performance measurements. Results showed that mean tilt angles causing the lidar beams to shift upwards, result in overestimation of the estimated hub height wind speed if no motion compensation is applied. The paper also assesses the impact of motions induced by different sea states on power production.
引用
收藏
页数:10
相关论文
共 15 条
[1]   A reference open-source controller for fixed and floating offshore wind turbines [J].
Abbas, Nikhar J. ;
Zalkind, Daniel S. ;
Pao, Lucy ;
Wright, Alan .
WIND ENERGY SCIENCE, 2022, 7 (01) :53-73
[2]  
Allen C, 2020, R M TECH CULT LAT AM, P15
[3]  
Angelou N, 2023, WIND ENERGY SCI DISC, V2023, P1
[4]  
[Anonymous], OFFSH WIND DEV PROGR
[5]   Technical Definition of the TetraSpar Demonstrator Floating Wind Turbine Foundation [J].
Borg, Michael ;
Jensen, Morten Walkusch ;
Urquhart, Scott ;
Andersen, Morten Thott ;
Thomsen, Jonas Bjerg ;
Stiesdal, Henrik .
ENERGIES, 2020, 13 (18)
[6]  
Borraccino A, 2017, WIND ENERGY SCI, V2, DOI 10.5194/wes-2-269-2017
[7]   Quantification and correction of motion influence for nacelle-based lidar systems on floating wind turbines [J].
Graefe, Moritz ;
Pettas, Vasilis ;
Gottschall, Julia ;
Cheng, Po Wen .
WIND ENERGY SCIENCE, 2023, 8 (06) :925-946
[8]   Updates on the OpenFAST Lidar Simulator [J].
Guo, Feng ;
Schlipf, David ;
Zhu, Hailong ;
Platt, Andy ;
Cheng, Po Wen ;
Thomas, Florian .
SCIENCE OF MAKING TORQUE FROM WIND, TORQUE 2022, 2022, 2265
[9]   Floating platform effects on power generation in spar and semisubmersible wind turbines [J].
Johlas, Hannah M. ;
Martinez-Tossas, Luis A. ;
Churchfield, Matthew J. ;
Lackner, Matthew A. ;
Schmidt, David P. .
WIND ENERGY, 2021, 24 (08) :901-916
[10]   Taking the Motion out of Floating Lidar: Turbulence Intensity Estimates with a Continuous-Wave Wind Lidar [J].
Kelberlau, Felix ;
Neshaug, Vegar ;
Lonseth, Lasse ;
Bracchi, Tania ;
Mann, Jakob .
REMOTE SENSING, 2020, 12 (05)