Evolutionary rewiring of the dynamic network underpinning allosteric epistasis in NS1 of the influenza A virus

被引:0
作者
Gonzales, James E. [1 ,2 ]
Kim, Iktae [3 ]
Bastiray, Abhishek [3 ]
Hwang, Wonmuk [1 ,4 ,5 ,6 ]
Cho, Jae-Hyun [3 ]
机构
[1] Texas A&M Univ, Dept Biomed Engn, College Stn, TX 77843 USA
[2] NHLBI, Lab Computat Biol, NIH, Bethesda, MD 20892 USA
[3] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA
[4] Texas A&M Univ, Dept Mat Sci & Engn, College Stn, TX 77843 USA
[5] Texas A&M Univ, Dept Phys & Astron, College Stn, TX 77843 USA
[6] Korea Inst Adv Study, Ctr Artificial Intelligence & Nat Sci, Seoul 02455, South Korea
关键词
molecular evolution; epistasis; network analysis; NMR dynamics; PROTEIN; MUTATIONS; RECOGNITION; ACTIVATION; BINDING; ENZYME;
D O I
10.1073/pnas.2410813122
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Viral proteins frequently mutate to evade host innate immune responses, yet the impact of these mutations on the molecular energy landscape remains unclear. Epistasis, the intramolecular communications between mutations, often renders the combined mutational effects unpredictable. Nonstructural protein 1 (NS1) is a major virulence factor of the influenza A virus (IAV) that activates host PI3K by binding to its p85f3 subunit. Here, we present a deep analysis of the impact of evolutionary mutations in NS1 that emerged between the 1918 pandemic IAV strain and its descendant PR8 strain. Our analysis reveals how the mutations rewired interresidue communications, which underlie long- range allosteric and epistatic networks in NS1. Our findings show that PR8 NS1 binds to p85f3 with approximately 10- fold greater affinity than 1918 NS1 due to allosteric mutational effects, which are further tuned by epistasis. NMR chemical shift perturbation and methyl- axis order parameter analyses revealed that the mutations induced long- range structural and dynamic changes in PR8 NS1, relative to 1918 NS1, enhancing its affinity to p85f3. Complementary molecular dynamics simulations and graph theory- based network analysis for conformational dynamics on the submicrosecond timescales uncover how these mutations rewire the dynamic network, which underlies the allosteric epistasis. Significantly, we find that conformational dynamics of residues with high betweenness centrality play a crucial role in communications between network communities and are highly conserved across influenza A virus evolution. These findings advance our mechanistic understanding of the allosteric and epistatic communications between distant residues and provide insight into their role in the molecular evolution of NS1.
引用
收藏
页数:10
相关论文
共 89 条
[1]   Role of a high centrality residue in protein dynamics and thermal stability [J].
Almeida, Vitor Medeiros ;
Chaudhuri, Apala ;
Cardoso, Marcus Vinicius Cangussu ;
Matsuyama, Bruno Yasui ;
Ferreira, Glaucio Monteiro ;
Goulart Trossini, Gustavo Henrique ;
Salinas, Roberto Kopke ;
Loria, J. Patrick ;
Marana, Sandro Roberto .
JOURNAL OF STRUCTURAL BIOLOGY, 2021, 213 (03)
[2]   Emerging Methods and Applications to Decrypt Allostery in Proteins and Nucleic Acids [J].
Arantes, Pablo R. ;
Patel, Amun C. ;
Palermo, Giulia .
JOURNAL OF MOLECULAR BIOLOGY, 2022, 434 (17)
[3]   Cryptic genetic variation shapes the adaptive evolutionary potential of enzymes [J].
Baier, Florian ;
Hong, Nansook ;
Yang, Gloria ;
Pabis, Anna ;
Miton, Charlotte M. ;
Barrozo, Alexandre ;
Carr, Paul D. ;
Kamerlin, Shina C. L. ;
Jackson, Colin J. ;
Tokuriki, Nobuhiko .
ELIFE, 2019, 8
[4]   Epistasis and Adaptation on Fitness Landscapes [J].
Bank, Claudia .
ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS, 2022, 53 :457-479
[5]   Sequence of the 1918 pandemic influenza virus nonstructural gene (NS) segment and characterization of recombinant viruses hearing the 1918 NS genes [J].
Basler, CF ;
Reid, AH ;
Dybing, JK ;
Janczewski, TA ;
Fanning, TG ;
Zheng, HY ;
Salvatore, M ;
Perdue, ML ;
Swayne, DE ;
García-Sastre, A ;
Palese, P ;
Taubenberger, JK .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2001, 98 (05) :2746-2751
[6]   Enzyme Evolution: An Epistatic Ratchet versus a Smooth Reversible Transition [J].
Ben-David, Moshe ;
Soskine, Misha ;
Dubovetskyi, Artem ;
Cherukuri, Kesava-Phaneendra ;
Dym, Orly ;
Sussman, Joel L. ;
Liao, Qinghua ;
Szeler, Klaudia ;
Kamerlin, Shina Caroline Lynn ;
Tawfik, Dan S. .
MOLECULAR BIOLOGY AND EVOLUTION, 2020, 37 (04) :1133-1147
[7]   Network analysis of protein dynamics [J].
Boede, Csaba ;
Kovacs, Istvan A. ;
Szalay, Mate S. ;
Palotai, Robin ;
Korcsmaros, Tamas ;
Csermely, Peter .
FEBS LETTERS, 2007, 581 (15) :2776-2782
[8]   Detecting Allosteric Networks Using Molecular Dynamics Simulation [J].
Bowerman, S. ;
Wereszczynski, J. .
COMPUTATIONAL APPROACHES FOR STUDYING ENZYME MECHANISM, PT B, 2016, 578 :429-447
[9]   From Structure to Systems: High-Resolution, Quantitative Genetic Analysis of RNA Polymerase II [J].
Braberg, Hannes ;
Jin, Huiyan ;
Moehle, Erica A. ;
Chan, Yujia A. ;
Wang, Shuyi ;
Shales, Michael ;
Benschop, Joris J. ;
Morris, John H. ;
Qiu, Chenxi ;
Hu, Fuqu ;
Tang, Leung K. ;
Fraser, James S. ;
Holstege, Frank C. P. ;
Hieter, Philip ;
Guthrie, Christine ;
Kaplan, Craig D. ;
Krogan, Nevan J. .
CELL, 2013, 154 (04) :775-788
[10]   On modularity clustering [J].
Brandes, Ulrik ;
Delling, Daniel ;
Gaertler, Marco ;
Goerke, Robert ;
Hoefer, Martin ;
Nikoloski, Zoran ;
Wagner, Dorothea .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2008, 20 (02) :172-188