Spatial-Spectral Aggregation Transformer With Diffusion Prior for Hyperspectral Image Super-Resolution

被引:0
|
作者
Zhang, Mingyang [1 ]
Wang, Xiangyu [1 ]
Wu, Shuang [1 ]
Wang, Zhaoyang [1 ]
Gong, Maoguo [2 ,3 ]
Zhou, Yu [1 ]
Jiang, Fenlong [4 ]
Wu, Yue [4 ]
机构
[1] Xidian Univ, Sch Elect Engn, Key Lab Collaborat Intelligence Syst, Minist Educ, Xian 710071, Peoples R China
[2] Xidian Univ, Minist Educ, Key Lab Collaborat Intelligence Syst, Xian 710071, Peoples R China
[3] Inner Mongolia Normal Univ, Coll Math Sci, Hohhot 010028, Peoples R China
[4] Xidian Univ, Sch Comp Sci & Technol, Key Lab Collaborat Intelligence Syst, Minist Educ, Xian 710071, Peoples R China
基金
中国国家自然科学基金;
关键词
Hyperspectral image super-resolution; prior features; attention mechanism; transformer; diffusion model;
D O I
10.1109/TCSVT.2024.3508844
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Constrained by imaging systems, hyperspectral images (HSIs) always have a low spatial resolution. Deep learning-based HSI super-resolution methods have achieved impressive results through learning the nonlinear mapping between low-resolution (LR) and high-resolution (HR) images. However, most of them take the LR image or its upsampled version through bicubic interpolation as input, leading to low-quality features and limited details captured by the network. As a powerful generative model, diffusion model has the ability to learn both contextual semantics and textual details from distinct timesteps, enabling the effective exploration of spatial-spectral distributions in high-dimensional data. In this paper, we propose a novel method that extracts high-quality prior information from original images to assist in super-resolution through pretraining a diffusion model. Specifically, we first train a diffusion model using original HSI patches in a self-supervised manner and then obtain prior features from the pretrained denoising U-Net decoder. To efficiently incorporate the prior features into the super-resolution model, we propose an adaptive fusion module based on spatial and spectral attention mechanisms, which enhances features in both dimensions while preserving the original characteristics. Additionally, to leverage the complementarity of spatial and spectral information, we design a spatial-spectral aggregation Transformer module that incorporates an adaptive interaction module to facilitate information exchange across different dimensions, thereby enhancing the representation capability. Extensive experiments on three public hyperspectral datasets demonstrate that the proposed method achieves excellent super-resolution performance and outperforms the state-of-the-art methods in terms of quantitative quality and visual results.
引用
收藏
页码:3557 / 3572
页数:16
相关论文
共 50 条
  • [21] Focal Aggregation Transformer for Light Field Image Super-Resolution
    Wang, Shunzhou
    Lu, Yao
    Xia, Wang
    PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2024, PT VIII, 2025, 15038 : 524 - 538
  • [22] Three-Dimension Spatial-Spectral Attention Transformer for Hyperspectral Image Denoising
    Zhang, Qiang
    Dong, Yushuai
    Zheng, Yaming
    Yu, Haoyang
    Song, Meiping
    Zhang, Lifu
    Yuan, Qiangqiang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62
  • [23] CONVOLUTION ENHANCED SPATIAL-SPECTRAL UNIFIED TRANSFORMER NETWORK FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Xin, Ziqi
    Li, Zhongwei
    Xu, Mingming
    Wang, Leiquan
    Zhu, Xue
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 2267 - 2270
  • [24] A Spatial-Spectral Transformer Network With Total Variation Loss for Hyperspectral Image Denoising
    Wang, Mengyuan
    He, Wei
    Zhang, Hongyan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [25] CenterFormer: A Center Spatial-Spectral Attention Transformer Network for Hyperspectral Image Classification
    Jia, Chenjing
    Zhang, Xiaohua
    Meng, Hongyun
    Xia, Shuxiang
    Jiao, Licheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 5523 - 5539
  • [26] A Diffusion Model-Assisted Multiscale Spectral Attention Network for Hyperspectral Image Super-Resolution
    He, Kaiqi
    Cai, Yiheng
    Peng, Shengjun
    Tan, Meiling
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 8612 - 8625
  • [27] Hyperspectral Image Super-Resolution with Self-Supervised Spectral-Spatial Residual Network
    Chen, Wenjing
    Zheng, Xiangtao
    Lu, Xiaoqiang
    REMOTE SENSING, 2021, 13 (07)
  • [28] Unsupervised multi-level spatio-spectral fusion transformer for hyperspectral image super-resolution
    Cao, Xuheng
    Lian, Yusheng
    Li, Jin
    Wang, Kaixuan
    Ma, Chao
    OPTICS AND LASER TECHNOLOGY, 2024, 176
  • [29] Local-global aggregation transformer for enhanced image super-resolution
    Wu, Yuxiang
    Wang, Xiaoyan
    Gao, Yuzhao
    Liu, Xiaoyan
    Dou, Yan
    DIGITAL SIGNAL PROCESSING, 2025, 161
  • [30] U-SHAPE SPECTRAL-TRANSFORMER FOR ROBUST FUSION BASED HYPERSPECTRAL SUPER-RESOLUTION
    Chen, Guochao
    Wu, Boxiong
    Xing, Haijiao
    Fu, Bowen
    Wei, Wei
    Zhang, Lei
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 6763 - 6766