Numerical solution of space-time variable fractional order advection-dispersion equation using radial basis functions

被引:2
|
作者
Moghadam, Abolfazl Soltanpour [1 ]
Arabameri, Maryam [1 ]
Barfeie, Mahdiar [2 ]
机构
[1] Univ Sistan & Baluchestan, Dept Math, Zahedan, Iran
[2] Sirjan Univ Technol, Dept Math & Comp Sci, Sirjan, Iran
来源
JOURNAL OF MATHEMATICAL MODELING | 2022年 / 10卷 / 03期
关键词
Advection-dispersion equation; Radial basis functions; Coimbra fractional derivative; Riemann-Liouvillefractional derivative; APPROXIMATION; CONVERGENCE; PARAMETER;
D O I
10.22124/JMM.2022.21325.1868
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper aims to advance the radial basis function method for solving space-time variableorder fractional partial differential equations. The fractional derivatives for time and space are considered in the Coimbra and the Riemann-Liouville sense, respectively. First, the time-variable fractional derivative is discretized through a finite difference approach. Then, the space-variable fractional derivative is approximated by radial basis functions. Also, we advance the Rippa algorithm to obtain a good value for the shape parameter of the radial basis functions. Results obtained from numerical experiments have been compared to the analytical solutions, which indicate high accuracy and efficiency for the proposed scheme.
引用
收藏
页码:549 / 562
页数:14
相关论文
共 50 条
  • [41] A New Compact Numerical Scheme for Solving Time Fractional Mobile-Immobile Advection-Dispersion Model
    Thomas, S.
    Nadupuri, S. K.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (03): : 241 - 262
  • [42] A fast Alikhanov algorithm with general nonuniform time steps for a two-dimensional distributed-order time-space fractional advection-dispersion equation
    Cao, Jiliang
    Xiao, Aiguo
    Bu, Weiping
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2023, 39 (04) : 2885 - 2908
  • [43] Application and analysis of spline approximation for time fractional mobile-immobile advection-dispersion equation
    Kanth, A. S. V. Ravi
    Deepika, Sirswal
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) : 1799 - 1819
  • [44] Numerical Solution of Nonlinear Time-Fractional Telegraph Equation by Radial Basis Function Collocation Method
    Sepehrian, Behnam
    Shamohammadi, Zahra
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2018, 42 (A4): : 2091 - 2104
  • [45] IMPLICIT DIFFERENCE SCHEME OF THE SPACE-TIME FRACTIONAL ADVECTION DIFFUSION EQUATION
    Abdel-Rehim, E. A.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2015, 18 (06) : 1452 - 1469
  • [46] A Matrix Transform Technique for Distributed-Order Time-Fractional Advection-Dispersion Problems
    Derakhshan, Mohammadhossein
    Hendy, Ahmed S.
    Lopes, Antonio M.
    Galhano, Alexandra
    Zaky, Mahmoud A.
    FRACTAL AND FRACTIONAL, 2023, 7 (09)
  • [47] Numerical Solution for the Variable Order Time Fractional Diffusion Equation with Bernstein Polynomials
    Chen, Yiming
    Liu, Liqing
    Li, Xuan
    Sun, Yannan
    CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2014, 97 (01): : 81 - 100
  • [48] A second-order numerical method for space-time variable-order diffusion equation
    Lu, Shujuan
    Xu, Tao
    Feng, Zhaosheng
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2021, 389 (389)
  • [49] Radial basis functions method for nonlinear time- and space-fractional Fokker-Planck equation
    Sepehrian, Behnam
    Shamohammadi, Zahra
    COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2021, 9 (04): : 1128 - 1147
  • [50] Jacobi Spectral Collocation Method for the Time Variable-Order Fractional Mobile-Immobile Advection-Dispersion Solute Transport Model
    Ma, Heping
    Yang, Yubo
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2016, 6 (03) : 337 - 352