Machine vision-based technology for the interface classification of precast concrete components

被引:0
|
作者
Zhao, Yong [1 ]
Wang, Zhiyan [1 ]
Liu, Jisong [1 ]
Zhang, Boyu [2 ]
机构
[1] Tongji Univ, Coll Civil Engn, Shanghai, Peoples R China
[2] China Acad Bldg Res, Beijing, Peoples R China
基金
国家重点研发计划;
关键词
Interface of precast concrete components; Construction quality; Machine vision; Convolutional neural network;
D O I
10.1016/j.engstruct.2025.119835
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The interfaces of precast concrete components serve as connections between components. The quality of these interfaces affects not only the bonding strength between the components but also the seismic performance of the entire structure. Therefore, the quality of the interface construction is a crucial factor in ensuring the safety and longevity of engineering projects. To enhance the reliability and objectivity of the inspection results of interface quality, this study introduced machine vision technology and investigated intelligent inspection approaches for interface construction quality, achieving the identification of two hierarchical key targets: construction techniques and roughness grades. First, this study integrated a specialized detection device to collect substantial images in a constrained environment, establishing a stable dataset called the Concrete Techniques and Roughness (CTR) dataset. Second, this study employed a hierarchical Convolutional Neural Network (CNN) structure in which layers make predictions in the descending order of class abstraction based on prior knowledge. This allows the model to classify sequentially according to construction techniques and roughness grades. Additionally, considering the characteristics of interfaces, this study introduced the Fused Strip Pooling and Convolutional (FSPC) attention module as a feature fusion attention mechanism that enhances the ability of the model to focus on the crucial quality features of interfaces. The integration of hierarchical prior knowledge and attention mechanisms significantly improved the classification performance. This approach achieved an accuracy of 100 % for the construction techniques and 96.26 % for the roughness grades on the testing set of the CTR dataset. The results demonstrate that this method provides an effective solution for the application of machine vision in the quality inspection of precast concrete component interfaces.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Review on Machine Vision-based Weight Assessment for Livestock and Poultry
    Xie Q.
    Zhou H.
    Bao J.
    Li Q.
    Nongye Jixie Xuebao/Transactions of the Chinese Society for Agricultural Machinery, 2022, 53 (10): : 1 - 15
  • [22] A machine vision-based radial circular runout measurement method
    Li, Wenjie
    Li, Fuquan
    Jiang, Zhansi
    Wang, Haijian
    Huang, Yang
    Liang, Qiaoxin
    Huang, Meikuan
    Li, Tengfei
    Gao, Xingyu
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2023, 126 (9-10) : 3949 - 3958
  • [23] A Machine Vision-Based Method of Impurity Detection for Rapeseed Harvesters
    Chen, Xu
    Guan, Zhuohuai
    Li, Haitong
    Zhang, Min
    PROCESSES, 2024, 12 (12)
  • [24] VISION-BASED OBSTACLE DETECTION USING A SUPPORT VECTOR MACHINE
    Ubbens, Timothy W.
    Schuurman, Derek C.
    2009 IEEE 22ND CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, VOLS 1 AND 2, 2009, : 1057 - 1060
  • [25] Machine vision-based surface crack analysis for transportation infrastructure
    Hu, Wenbo
    Wang, Weidong
    Ai, Chengbo
    Wang, Jin
    Wang, Wenjuan
    Meng, Xuefei
    Liu, Jun
    Tao, Haowen
    Qiu, Shi
    AUTOMATION IN CONSTRUCTION, 2021, 132
  • [26] Monocular Dynamic Machine Vision-Based Pearl Shape Detection
    王毓综
    邓飞
    赵大旭
    叶佳英
    王佩欣
    寿国忠
    Journal of Shanghai Jiaotong University(Science), 2019, 24 (05) : 654 - 662
  • [27] Automatic Inspection and Classification for casting of tractors chassis Based on Machine Vision Recognition Technology
    Zhao, Hong
    HIGH PERFORMANCE STRUCTURES AND MATERIALS ENGINEERING, PTS 1 AND 2, 2011, 217-218 : 841 - 845
  • [28] Machine vision-based transverse vibration measurement of diamond wire
    Zheng, Jintao
    Zhao, Yukang
    Ge, Mengran
    Bi, Wenbo
    Ge, Peiqi
    PRECISION ENGINEERING-JOURNAL OF THE INTERNATIONAL SOCIETIES FOR PRECISION ENGINEERING AND NANOTECHNOLOGY, 2023, 80 : 115 - 126
  • [29] Monocular Dynamic Machine Vision-Based Pearl Shape Detection
    Wang Y.
    Deng F.
    Zhao D.
    Ye J.
    Wang P.
    Shou G.
    Journal of Shanghai Jiaotong University (Science), 2019, 24 (05) : 654 - 662
  • [30] Detection and recognition of concrete cracks on building surface based on machine vision
    Zhu, Xiaofei
    PROGRESS IN ARTIFICIAL INTELLIGENCE, 2022, 11 (02) : 143 - 150