Efficient quantum algorithm for lattice protein folding

被引:0
作者
Wang, Youle [1 ]
Zhou, Xiangzhen [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Sch Software, Nanjing 210044, Peoples R China
[2] Nanjing Tech Univ, Coll Comp & Informat Engn, Nanjing 211816, Peoples R China
来源
QUANTUM SCIENCE AND TECHNOLOGY | 2025年 / 10卷 / 01期
基金
中国国家自然科学基金;
关键词
quantum computing; protein folding; polynomial unconstrained binary optimization; HP MODEL; PATHWAYS; PREDICTION; SIMULATION;
D O I
10.1088/2058-9565/ada08e
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Predicting a protein's three-dimensional structure from its primary amino acid sequence constitutes the protein folding problem, a pivotal challenge within computational biology. This task has been identified as a fitting domain for applying quantum annealing, an algorithmic technique posited to be faster than its classical counterparts. Nevertheless, the utility of quantum annealing is intrinsically contingent upon the spectral gap associated with the Hamiltonian of lattice proteins. This critical dependence introduces a limitation to the efficacy of these techniques, particularly in the context of simulating the intricate folding processes of proteins. In this paper, we address lattice protein folding as a polynomial unconstrained binary optimization problem, devising a hybrid quantum-classical algorithm to determine the minimum energy conformation effectively. Our method is distinguished by its logarithmic scaling with the spectral gap, conferring a significant edge over the conventional quantum annealing algorithms. The present findings indicate that the folding of lattice proteins can be achieved with a resource consumption that is polynomial in the lattice protein length, provided an ansatz state that encodes the target conformation is utilized. We also provide a simple and scalable method for preparing such states and further explore the adaptation of our method for extension to off-lattice protein models. This work paves a new avenue for surmounting complex computational biology problems via the utilization of quantum computers.
引用
收藏
页数:29
相关论文
共 97 条
  • [1] De novo prediction of protein folding pathways and structure using the principle of sequential stabilization
    Adhikari, Aashish N.
    Freed, Karl F.
    Sosnick, Tobin R.
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (43) : 17442 - 17447
  • [2] Adiabatic quantum computation
    Albash, Tameem
    Lidar, Daniel A.
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
  • [3] Alberts B., 2002, MOL BIOL CELL
  • [4] Allcock J., 2022, FRONT DRUG DISCOV, V2, P908870
  • [5] Quantum variational algorithms are swamped with traps
    Anschuetz, Eric R.
    Kiani, Bobak T.
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)
  • [6] Quantum supremacy using a programmable superconducting processor
    Arute, Frank
    Arya, Kunal
    Babbush, Ryan
    Bacon, Dave
    Bardin, Joseph C.
    Barends, Rami
    Biswas, Rupak
    Boixo, Sergio
    Brandao, Fernando G. S. L.
    Buell, David A.
    Burkett, Brian
    Chen, Yu
    Chen, Zijun
    Chiaro, Ben
    Collins, Roberto
    Courtney, William
    Dunsworth, Andrew
    Farhi, Edward
    Foxen, Brooks
    Fowler, Austin
    Gidney, Craig
    Giustina, Marissa
    Graff, Rob
    Guerin, Keith
    Habegger, Steve
    Harrigan, Matthew P.
    Hartmann, Michael J.
    Ho, Alan
    Hoffmann, Markus
    Huang, Trent
    Humble, Travis S.
    Isakov, Sergei V.
    Jeffrey, Evan
    Jiang, Zhang
    Kafri, Dvir
    Kechedzhi, Kostyantyn
    Kelly, Julian
    Klimov, Paul V.
    Knysh, Sergey
    Korotkov, Alexander
    Kostritsa, Fedor
    Landhuis, David
    Lindmark, Mike
    Lucero, Erik
    Lyakh, Dmitry
    Mandra, Salvatore
    McClean, Jarrod R.
    McEwen, Matthew
    Megrant, Anthony
    Mi, Xiao
    [J]. NATURE, 2019, 574 (7779) : 505 - +
  • [7] Asano T., 1996, Scandinavian Workshop on Algorithm Theory, ppp 100
  • [8] Babbush R., 2014, Construction of energy functions for lattice heteropolymer models: efficient encodings for constraint satisfaction programming and quantum annealing 155
  • [9] Babej T, 2018, Arxiv, DOI [arXiv:1811.00713, 10.48550/arXiv.1811.00713, DOI 10.48550/ARXIV.1811.00713]
  • [10] Quantum algorithms for electronic structure calculations: Particle-hole Hamiltonian and optimized wave-function expansions
    Barkoutsos, Panagiotis Kl
    Gonthier, Jerome F.
    Sokolov, Igor
    Moll, Nikolaj
    Salis, Gian
    Fuhrer, Andreas
    Ganzhorn, Marc
    Egger, Daniel J.
    Troyer, Matthias
    Mezzacapo, Antonio
    Filipp, Stefan
    Tavernelli, Ivano
    [J]. PHYSICAL REVIEW A, 2018, 98 (02)