Two-step inertial ADMM for the solution of nonconvex nonsmooth optimization problems with nonseparable structure

被引:0
|
作者
Dang, Yazheng [1 ]
Kun, Xu [1 ]
Lu, Jinglei [1 ]
机构
[1] Univ Shanghai Sci & Technol, Sch Management, Jungong Rd, Shanghai 200093, Peoples R China
关键词
nonseparable nonconvex and nonsmooth; two-step inertial effect; three relaxed terms; kurdyka-& lstrok; ojasiewicz inequality; global convergence; ALTERNATING DIRECTION METHOD; MONOTONE-OPERATORS; MINIMIZATION; CONVERGENCE; MULTIPLIERS; ALGORITHMS;
D O I
10.1088/1402-4896/adaa2b
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we propose an algorithmic framework called two-step inertial alternating direction methods of multipliers (TIADMM) to solve a class of nonconvex and nonsmooth optimization problems with nonseparable structure. The new algorithm adds two-step inertial effect to each subproblem and introduces three relaxed terms into the dual update step to improve the convergence. This work employs two assumptions; (1) the auxiliary function satisfies the Kurdyka-& Lstrok;ojasiewicz property, and (2) the parameters satisfy some conditions to prove the global convergence of the sequence generated by the algorithm. Furthermore, the algorithm is extended to a linearization vision for solving nonconvex optimization problems. Finally, tests are conducted on two numerical examples to show the effectiveness.
引用
收藏
页数:18
相关论文
共 50 条
  • [11] Two inertial proximal coordinate algorithms for a family of nonsmooth and nonconvex optimization problems
    Dang, Ya Zheng
    Sun, Jie
    Teo, Kok Lay
    AUTOMATICA, 2025, 171
  • [12] Two inertial proximal coordinate algorithms for a family of nonsmooth and nonconvex optimization problems
    Dang, Ya Zheng
    Sun, Jie
    Teo, Kok Lay
    Automatica,
  • [13] A Method of Inertial Regularized ADMM for Separable Nonconvex Optimization Problems
    Chao, Miantao
    Geng, Yueqi
    Zhao, Yongxin
    SOFT COMPUTING, 2023, 27 (22) : 16741 - 16757
  • [14] A Method of Inertial Regularized ADMM for Separable Nonconvex Optimization Problems
    Miantao Chao
    Yueqi Geng
    Yongxin Zhao
    Soft Computing, 2023, 27 : 16741 - 16757
  • [15] Solution of Nonconvex Nonsmooth Stochastic Optimization Problems
    Yu. M. Ermoliev
    V. I. Norkin
    Cybernetics and Systems Analysis, 2003, 39 (5) : 701 - 715
  • [16] Global Convergence of ADMM in Nonconvex Nonsmooth Optimization
    Wang, Yu
    Yin, Wotao
    Zeng, Jinshan
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 78 (01) : 29 - 63
  • [17] An inexact ADMM for separable nonconvex and nonsmooth optimization
    Bai, Jianchao
    Zhang, Miao
    Zhang, Hongchao
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2025, 90 (02) : 445 - 479
  • [18] Global Convergence of ADMM in Nonconvex Nonsmooth Optimization
    Yu Wang
    Wotao Yin
    Jinshan Zeng
    Journal of Scientific Computing, 2019, 78 : 29 - 63
  • [19] Linearized ADMM for Nonconvex Nonsmooth Optimization With Convergence Analysis
    Liu, Qinghua
    Shen, Xinyue
    Gu, Yuantao
    IEEE ACCESS, 2019, 7 : 76131 - 76144
  • [20] AN EXTENDED ADMM FOR 3-BLOCK NONCONVEX NONSEPARABLE PROBLEMS WITH APPLICATIONS
    Liu, Zekun
    arXiv,