Physiological state recognition model of small silkworm based on improved YOLOv5

被引:0
|
作者
Liu, Pu [1 ]
He, Xingrui [1 ]
Zhao, Kai [2 ]
Li, Wei [1 ]
Huang, Bo [1 ]
机构
[1] Sichuan Univ Sci & Engn, Yibin 644000, Peoples R China
[2] Yibin Mulberry Silkworm Ind Dev Ctr, Yibin, Peoples R China
关键词
Physiological recognition of small silkworm; YOLOv5; SE module; Focal-EIoU;
D O I
10.1177/00368504241298136
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Silkworm breeding, as a pivotal economic activity across various regions of China, plays a crucial role in promoting rural revitalization. Notably, the early stage of silkworm development, during which the larvae are most vulnerable and environmentally sensitive, poses significant challenges due to their high pathogenicity and mortality rates. To enhance the efficiency of silkworm breeding, it is imperative to accurately and rapidly identify the physiological state of these small silkworms, ensuring timely feedback to farmers. By using the manually labeled data set, we trained a neural network model to identify the age of the small silkworm through the external characteristics and body length of different instars, and the model used the output center point coordinates to evaluate whether the silkworm entered the dormancy period. If the small silkworm enters the dormant period, the small silkworm will not move. By comparing the maximum difference of the coordinates of the center point of the small silkworm in the experimental group during the dormant period and the feeding period, a certain threshold is set. If the maximum difference of the coordinates of the center point is less than the threshold, the small silkworm is judged to enter the dormant period. To further enhance the model's performance, we introduced an improved target detection network model, building upon the established YOLOv5 architecture. This enhanced model integrates the C3-SE attention mechanism, enabling the network to focus more intently on the target of interest, thus improving detection accuracy. Additionally, we replaced the CIoU loss function in the original target detection network model with the Focal-EIoU loss function. This adjustment effectively mitigates the issue of imbalanced positive and negative samples, accelerating the convergence speed of the network and ultimately enhancing the model's accuracy and recall rate. To validate the accuracy of the proposed model, we randomly selected sample pictures from the curated small silkworm dataset, constituting the test and verification sets. This dataset comprised images and videos capturing different developmental stages of small silkworms. The test results demonstrate that the improved YOLOv5 model achieves an average accuracy of 92.2%, surpassing the preimproved network model by 2.29%. Specifically, the model exhibits a 0.3% increase in accuracy, a 3.4% improvement in recall rate, and a significant 7.7% enhancement in frames per second. These findings indicate that the enhanced YOLOv5 model is capable of accurately and efficiently identifying the physiological state of small silkworms.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] A Vehicle Recognition Model Based on Improved YOLOv5
    Shao, Lei
    Wu, Han
    Li, Chao
    Li, Ji
    ELECTRONICS, 2023, 12 (06)
  • [2] Plant Disease Recognition Model Based on Improved YOLOv5
    Chen, Zhaoyi
    Wu, Ruhui
    Lin, Yiyan
    Li, Chuyu
    Chen, Siyu
    Yuan, Zhineng
    Chen, Shiwei
    Zou, Xiangjun
    AGRONOMY-BASEL, 2022, 12 (02):
  • [3] A Lightweight Traffic Sign Recognition Model Based on Improved YOLOv5
    Yang, Jie
    Sun, Ting
    Zhu, Wenchao
    Li, Zonghao
    IEEE ACCESS, 2023, 11 : 115998 - 116010
  • [4] Tomato Maturity Recognition Model Based on Improved YOLOv5 in Greenhouse
    Li, Renzhi
    Ji, Zijing
    Hu, Shikang
    Huang, Xiaodong
    Yang, Jiali
    Li, Wenfeng
    AGRONOMY-BASEL, 2023, 13 (02):
  • [5] Strawberry Maturity Recognition Based on Improved YOLOv5
    Tao, Zhiqing
    Li, Ke
    Rao, Yuan
    Li, Wei
    Zhu, Jun
    AGRONOMY-BASEL, 2024, 14 (03):
  • [6] Surgical Instrument Recognition Based on Improved YOLOv5
    Jiang, Kaile
    Pan, Shuwan
    Yang, Luxuan
    Yu, Jie
    Lin, Yuanda
    Wang, Huaiqian
    APPLIED SCIENCES-BASEL, 2023, 13 (21):
  • [7] Computer Interactive Gesture Recognition Model Based on Improved YOLOv5 Algorithm
    Yu, Chunling
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [8] Recognition and Detection of Persimmon in a Natural Environment Based on an Improved YOLOv5 Model
    Cao, Ziang
    Mei, Fangfang
    Zhang, Dashan
    Liu, Bingyou
    Wang, Yuwei
    Hou, Wenhui
    ELECTRONICS, 2023, 12 (04)
  • [9] An Improved Traffic Sign Detection and Recognition Deep Model Based on YOLOv5
    Wang, Qianying
    Li, Xiangyu
    Lu, Ming
    IEEE ACCESS, 2023, 11 : 54679 - 54691
  • [10] BI-TST_YOLOv5: Ground Defect Recognition Algorithm Based on Improved YOLOv5 Model
    Qin, Jiahao
    Yang, Xiaofeng
    Zhang, Tianyi
    Bi, Shuilan
    WORLD ELECTRIC VEHICLE JOURNAL, 2024, 15 (03):