High-Dimensional Constrained Huber Regression

被引:0
作者
Wei, Quan [1 ]
Zhao, Ziping [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai, Peoples R China
来源
2024 IEEE 13RD SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, SAM 2024 | 2024年
关键词
Statistical estimation; high-dimensional statistics; sparse learning; robust regression; linear convergence; NONCONCAVE PENALIZED LIKELIHOOD; VARIABLE SELECTION; M-ESTIMATORS; ASYMPTOTIC-BEHAVIOR; QUANTILE REGRESSION; SHRINKAGE;
D O I
10.1109/SAM60225.2024.10636613
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In big data analytics, the collected data may be contaminated by heavy-tailed noises or outliers, and the sample size may be insufficient. In this paper, we study robust sparse regression under the presence of asymmetric heavy-tailed errors within a high-dimensional setting, where the ambient dimension can exceed the sample size. The estimation problem is formulated as an l(1) constrained regression with Huber loss function. We propose a simple projected gradient descent algorithm to solve the problem and establish its convergence properties, accounting for both computational and statistical errors. Under mild conditions, we demonstrate that the successive iterates converge at a linear rate to an estimate within the statistical precision of the model. Numerical experiments validate the robust estimation performance of the proposed method across various heavy-tail distribution settings.
引用
收藏
页数:5
相关论文
共 33 条
[1]   FAST GLOBAL CONVERGENCE OF GRADIENT METHODS FOR HIGH-DIMENSIONAL STATISTICAL RECOVERY [J].
Agarwal, Alekh ;
Negahban, Sahand ;
Wainwright, Martin J. .
ANNALS OF STATISTICS, 2012, 40 (05) :2452-2482
[2]   l1-PENALIZED QUANTILE REGRESSION IN HIGH-DIMENSIONAL SPARSE MODELS [J].
Belloni, Alexandre ;
Chernozhukov, Victor .
ANNALS OF STATISTICS, 2011, 39 (01) :82-130
[3]   SLOPE-ADAPTIVE VARIABLE SELECTION VIA CONVEX OPTIMIZATION [J].
Bogdan, Malgorzata ;
van den Berg, Ewout ;
Sabatti, Chiara ;
Su, Weijie ;
Candes, Emmanuel J. .
ANNALS OF APPLIED STATISTICS, 2015, 9 (03) :1103-1140
[4]  
Bühlmann P, 2011, SPRINGER SER STAT, P1, DOI 10.1007/978-3-642-20192-9
[5]  
Cont R, 2001, QUANT FINANC, V1, P223, DOI 10.1088/1469-7688/1/2/304
[6]  
Duchi J., 2008, P 25 INT C MACH LEAR, P272, DOI [DOI 10.1145/1390156.1390191, 10.1145/1390156.1390191]
[7]   Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates [J].
Eklund, Anders ;
Nichols, Thomas E. ;
Knutsson, Hans .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2016, 113 (28) :7900-7905
[8]  
Fan JQ, 2021, ANN STAT, V49, P1239, DOI [10.1214/20-aos1980, 10.1214/20-AOS1980]
[9]   Estimation of high dimensional mean regression in the absence of symmetry and light tail assumptions [J].
Fan, Jianqing ;
Li, Quefeng ;
Wang, Yuyan .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (01) :247-265
[10]   ADAPTIVE ROBUST VARIABLE SELECTION [J].
Fan, Jianqing ;
Fan, Yingying ;
Barut, Emre .
ANNALS OF STATISTICS, 2014, 42 (01) :324-351