On derivatives of zeta and L-functions

被引:0
作者
Dong, Zikang [1 ]
Song, Yutong [1 ]
Wang, Weijia [2 ]
Zhang, Hao [3 ]
机构
[1] Tongji Univ, Sch Math Sci, Shanghai 200092, Peoples R China
[2] Chinese Acad Sci, Acad Math & Syst Sci, Morningside Ctr Math, Beijing 100190, Peoples R China
[3] Hunan Univ, Sch Math, Changsha 410082, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Extreme values; Riemann zeta function; Dirichlet L-function; EXTREME VALUES; SUMS;
D O I
10.1007/s11139-024-00963-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let & ell;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell $$\end{document} be a fixed natural number. We study the conditional upper bounds and extreme values of derivatives of the Riemann zeta function |zeta(& ell;)(sigma+it)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\zeta <^>{(\ell )}(\sigma +\textrm{i}t)|$$\end{document} and Dirichlet L-functions L(& ell;)(sigma,chi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{(\ell )}(\sigma ,\chi )$$\end{document} with chi(modq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi (\textrm{mod}\;q)$$\end{document}, where sigma\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} is close to 1. We show that, if |sigma-1|<< 1/log2t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\sigma -1|\ll 1/\log _2t$$\end{document}, then |zeta(& ell;)(sigma+it)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\zeta <^>{(\ell )}(\sigma +\textrm{i}t)|$$\end{document} has the same maximal order (up to the leading coefficients) as |zeta(& ell;)(1+it)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|\zeta <^>{(\ell )}(1+\textrm{i}t)|$$\end{document} when t ->infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t\rightarrow \infty $$\end{document}. Similar results can be obtained for Dirichlet L-functions L(& ell;)(sigma,chi)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{(\ell )}(\sigma ,\chi )$$\end{document} with chi(modq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\chi \pmod q$$\end{document} nonprincipal.
引用
收藏
页码:35 / 35
页数:1
相关论文
共 17 条
[1]  
Bondarenko A., 2018, Oper. Theory: Adv. Appl, V261, P121
[2]   Bounding ζ (s) in the critical strip [J].
Carneiro, Emanuel ;
Chandee, Vorrapan .
JOURNAL OF NUMBER THEORY, 2011, 131 (03) :363-384
[3]   Bounding |ζ(1/2+it)| on the Riemann hypothesis [J].
Chandee, Vorrapan ;
Soundararajan, K. .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2011, 43 :243-250
[4]  
Dong ZK, 2023, Arxiv, DOI arXiv:2310.13383
[5]   A NOTE ON THE LARGE VALUES OF |?(l)(1+it)| [J].
Dong, Zikang ;
Wei, Bin .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2023, 108 (02) :217-223
[6]   Large character sums [J].
Granville, A ;
Soundararajan, K .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 14 (02) :365-397
[7]  
Granville A., 2006, RAMANUJAN MATH SOC L, V2, P65
[8]   Large character sums: Pretentious characters and the Polya-Vinogradov theorem [J].
Granville, Andrew ;
Soundararajan, K. .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 20 (02) :357-384
[9]  
Hildebrand A., 1993, J. Theor. Nombres Bordeaux, V5, P411
[10]   CONDITIONAL BOUNDS FOR THE LEAST QUADRATIC NON-RESIDUE AND RELATED PROBLEMS [J].
Lamzouri, Youness ;
Li, Xiannan ;
Soundararajan, Kannan .
MATHEMATICS OF COMPUTATION, 2015, 84 (295) :2391-2412