Lightweight Stereo Image Super-Resolution Using modified Parallax Attention

被引:0
|
作者
Govind, Smriti [1 ]
Pradeep, R. [1 ]
机构
[1] APJ Abdul Kalam Technol Univ, Coll Engn Trivandrum, Dept Elect & Commun Engn, Thiruvananthapuram 695016, Kerala, India
来源
JOURNAL OF SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY | 2025年
关键词
Stereo image; Super-resolution; Parallax attention module; Depth wise convolutions; Occlusion; Multi-camera;
D O I
10.1007/s11265-025-01953-y
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recent smartphones employ multi-camera setups for capturing images, prompting the exploration of stereo image super-resolution (SSR) algorithms. SSR uses the complementary information provided by a binocular system to upscale input stereo image pairs. The effectiveness of SSR algorithms depends on successfully utilizing the stereo information from the training images. This paper, proposes a lightweight stereo image super-resolution method using modified parallax attention (LmPASSR), which enhances the utilization of stereo information. This is achieved through a modified occlusion mask that filters out irrelevant attention values. Additionally, the model incorporates depth-wise convolutions, implemented as D-blocks, to minimize parameter usage. Experimental results demonstrate that despite having fewer parameters, the proposed model produces results comparable to state-of-the-art (SOTA) methods.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Cross Parallax Attention Network for Stereo Image Super-Resolution
    Chen, Canqiang
    Qing, Chunmei
    Xu, Xiangmin
    Dickinson, Patrick
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 202 - 216
  • [2] Parallax-Based Spatial and Channel Attention for Stereo Image Super-Resolution
    Duan, Chenyang
    Xiao, Nanfeng
    IEEE ACCESS, 2019, 7 : 183672 - 183679
  • [3] A Stereo Attention Module for Stereo Image Super-Resolution
    Ying, Xinyi
    Wang, Yingqian
    Wang, Longguang
    Sheng, Weidong
    An, Wei
    Guo, Yulan
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 496 - 500
  • [4] TBNet: Stereo Image Super-Resolution with Multi-Scale Attention
    Zhu, Jiyang
    Han, Xue
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2023, 32 (18)
  • [5] Lightweight adaptive enhanced attention network for image super-resolution
    Wang, Li
    Xu, Lizhong
    Shi, Jianqiang
    Shen, Jie
    Huang, Fengcheng
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (05) : 6513 - 6537
  • [6] Lightweight Attention-Guided Network for Image Super-Resolution
    Ding, Zixuan
    Juan, Zhang
    Xiang, Li
    Wang, Xinyu
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (14)
  • [7] Lightweight adaptive enhanced attention network for image super-resolution
    Li Wang
    Lizhong Xu
    Jianqiang Shi
    Jie Shen
    Fengcheng Huang
    Multimedia Tools and Applications, 2022, 81 : 6513 - 6537
  • [8] LCRCA: image super-resolution using lightweight concatenated residual channel attention networks
    Changmeng Peng
    Pei Shu
    Xiaoyang Huang
    Zhizhong Fu
    Xiaofeng Li
    Applied Intelligence, 2022, 52 : 10045 - 10059
  • [9] LCRCA: image super-resolution using lightweight concatenated residual channel attention networks
    Peng, Changmeng
    Shu, Pei
    Huang, Xiaoyang
    Fu, Zhizhong
    Li, Xiaofeng
    APPLIED INTELLIGENCE, 2022, 52 (09) : 10045 - 10059
  • [10] Lightweight image super-resolution network using involution
    Jiu Liang
    Yu Zhang
    Jiangbo Xue
    Yu Zhang
    Yanda Hu
    Machine Vision and Applications, 2022, 33