A Charge-Domain Design of Ferroelectric Tunneling Junction Synapse for Spiking Neural Networks

被引:1
作者
Zhu, Xiaobao [1 ]
Feng, Ning [1 ]
Qiu, Jiajun [1 ]
Wang, Xianyu [1 ]
Zeng, Min [2 ]
Wu, Yanqing [2 ]
Zhang, Lining [1 ]
机构
[1] Peking Univ, Sch Elect & Comp Engn, Guangdong Prov Key Lab Inmemory Comp Chips, Shenzhen 518055, Peoples R China
[2] Peking Univ, Sch Integrated Circuits, Beijing 100871, Peoples R China
关键词
Tunneling; Circuits; Capacitance; Neurons; Synapses; Discharges (electric); Transistors; Cathodes; Resistance; Junctions; Ferroelectric tunneling junction (FTJ); image classification; neuromorphic computing; spiking neuron network (SNN); MEMORY;
D O I
10.1109/TED.2025.3540759
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A charge-domain design of synaptic circuits based on ferroelectric tunnel junctions (FTJs) is proposed in this work. The device characteristics of experimental FTJs are analyzed, including their varactor properties, voltage-modulated tunneling electro-resistance (TER), and their significant displacement current, which challenge the circuit designs. A charge-domain design strategy is deployed to adapt this uniqueness, and a synaptic FTJ cell with the spiking-time-dependent-plasticity (STDP) rule is developed. With a TCAD-simulated FTJ of representative characteristics, the synaptic cell comprises seven transistors and one FTJ, mitigating the impacts of capacitive current and amplifying the differences of resistance states. Functional design and parameter tuning of leaky integrate-and-fire (LIF) neurons were performed. Using SPICE simulation, FTJ synapses were connected to LIF neurons, forming a low-power, unsupervised spiking neural network (SNN). Trained and tested on Modified National Institute of Standards and Technology (MNIST) handwritten digits, it achieved 88% classification accuracy. This confirms the self-learning ability of the FTJ-based neural network circuit, offering insights for neuromorphic computing advancements.
引用
收藏
页码:1730 / 1737
页数:8
相关论文
共 42 条
[1]   Unsupervised Learning by Spike Timing Dependent Plasticity in Phase Change Memory (PCM) Synapses [J].
Ambrogio, Stefano ;
Ciocchini, Nicola ;
Laudato, Mario ;
Milo, Valerio ;
Pirovano, Agostino ;
Fantini, Paolo ;
Ielmini, Daniele .
FRONTIERS IN NEUROSCIENCE, 2016, 10
[2]   Impact of Temperature-Induced Oxide Defects on HfxZr1-xO2 Ferroelectric Tunnel Junction Memristor Performance [J].
Athle, Robin ;
Borg, Mattias .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2023, 70 (03) :1412-1416
[3]   Low-Power, High-Performance 64-bit CMOS Priority Encoder Using Static-Dynamic Parallel Architecture [J].
Balobas, Dimitrios ;
Konofaos, Nikos .
2016 5TH INTERNATIONAL CONFERENCE ON MODERN CIRCUITS AND SYSTEMS TECHNOLOGIES (MOCAST), 2016,
[4]   Low-power linear computation using nonlinear ferroelectric tunnel junction memristors [J].
Berdan, Radu ;
Marukame, Takao ;
Ota, Kensuke ;
Yamaguchi, Marina ;
Saitoh, Masumi ;
Fujii, Shosuke ;
Deguchi, Jun ;
Nishi, Yoshifumi .
NATURE ELECTRONICS, 2020, 3 (05) :259-266
[5]   Low-Energy Spiking Neural Network Using Ge4Sb6Te7 Phase Change Memory Synapses [J].
Bin Hamid, Shafin ;
Khan, Asir Intisar ;
Zhang, Huairuo ;
Davydov, Albert V. ;
Pop, Eric .
IEEE ELECTRON DEVICE LETTERS, 2024, 45 (10) :1819-1822
[6]  
Chandra K. Anil, 2020, Procedia Computer Science, V171, P1037, DOI [10.1016/j.procs.2020.04.111, 10.1016/j.procs.2020.04.111]
[7]   A Physics-Based Dynamic Compact Model of Ferroelectric Tunnel Junctions [J].
Feng, Ning ;
Li, Hao ;
Zhang, Lining ;
Ji, Ning ;
Zhang, Fangxi ;
Zhu, Xiaobao ;
Shang, Zongwei ;
Cai, Puyang ;
Li, Ming ;
Wang, Runsheng ;
Huang, Ru .
IEEE ELECTRON DEVICE LETTERS, 2023, 44 (02) :261-264
[8]   Charge-Trapping-Induced Compensation of the Ferroelectric Polarization in FTJs']Js: Optimal Conditions for a Synaptic Device Operation [J].
Fontanini, R. ;
Segatto, M. ;
Nair, K. S. ;
Holzer, M. ;
Driussi, F. ;
Hausler, I. ;
Koch, C. T. ;
Dubourdieu, C. ;
Deshpande, V. ;
Esseni, D. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (07) :3694-3699
[9]   Polarization switching and interface charges in BEOL compatible Ferroelectric Tunnel Junctions [J].
Fontanini, R. ;
Barbot, J. ;
Segatto, M. ;
Lancaster, S. ;
Duong, Q. ;
Driussi, F. ;
Grenouillet, L. ;
Triozon, F. ;
Coignus, J. ;
Mikolajick, T. ;
Slesazeck, S. ;
Esseni, D. .
IEEE 51ST EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE (ESSDERC 2021), 2021, :255-258
[10]   Performance Enhancement and Transient Current Response of Ferroelectric Tunnel Junction: A Theoretical Study [J].
Huang, Hsin-Hui ;
Chu, Yueh-Hua ;
Wu, Tzu-Yun ;
Wu, Ming-Hung ;
Wang, I-Ting ;
Hou, Tuo-Hung .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2022, 69 (08) :4686-4692