Real-time monitoring method for gadolinium concentration in a water Cherenkov detector

被引:0
作者
Iwata, Yoshihiro [1 ]
Sekiya, Hiroyuki [2 ,3 ]
Ito, Chikara [4 ]
机构
[1] Japan Atom Energy Agcy, Collaborat Labs Adv Decommissioning Sci, 2-4 Shirakata, Naka, Ibaraki 3191195, Japan
[2] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, 456 Higashi Mozumi, Hida, Gifu 5061205, Japan
[3] Univ Tokyo, Univ Tokyo Inst Adv Study, Kavli Inst Phys & Math Universe WPI, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan
[4] Japan Atom Energy Agcy, Safety & Nucl Secur Adm Head Off, Safety Adm Dept, 2-2-2 Uchisaiwai Cho,Chiyoda Ku, Tokyo 1008577, Japan
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2025年 / 131卷 / 03期
基金
日本学术振兴会;
关键词
Time-resolved laser-induced luminescence spectroscopy; Gadolinium ion emission; Real-time monitoring; Super-Kamiokande (SK) water Cherenkov detector; Laser interaction with liquids; Laser-based analytical methods; INDUCED BREAKDOWN SPECTROSCOPY; LANTHANIDE(III) IONS; LUMINESCENCE;
D O I
10.1007/s00339-025-08283-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Time-resolved laser-induced luminescence spectroscopy is useful for real-time measurement of lanthanide ion concentrations in aqueous solution. Gadolinium ions (Gd3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{3+}$$\end{document}), in particular, have a long (similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document}ms) emission lifetime, so that the ion emission can be easily distinguished from scattering of the excitation pulsed laser without the need for a monochromator. In this work, we have developed a real-time monitoring method for Gd concentration in water, aiming at application to the Super-Kamiokande (SK) water Cherenkov detector in which 0.03% Gd is currently dissolved in the form of sulfate for the observation of supernova relic neutrino events. The basic concept is to install a tube to run a portion of the water sample through a quartz cell (2 cm on each side), where a ns-pulsed laser at 266 nm is irradiated to excite Gd3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{3+}$$\end{document} ions. The generated Gd3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{3+}$$\end{document} ion emission at 312 nm is collimated by a lens, transmitted through a bandpass filter, and then detected by a photomultiplier tube placed about 10 cm away from the quartz cell. While lower Gd concentration and higher pulsed laser energy resulted in shorter Gd3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{3+}$$\end{document} emission lifetime, good linearity was confirmed between Gd concentration and normalized peak emission voltage in the wide range of 1-1000 ppm (0.1%) Gd in ultrapure water. The detection limit, defined as three times the standard deviation of the background level, was determined to be similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document}60 ppb for Gd sulfate in ultrapure water. This value is about two orders of magnitude better than the reported value using laser-induced breakdown spectroscopy, and is close to that using inductively coupled plasma optical emission spectrometry which requires sample introduction into the spectrometer. Sulfate ions in aqueous solution appear to have a smaller quenching effect than O-H vibrations of water molecules coordinated to the cation. By confirming a detection sensitivity below the ppm-level, this method could be effective for monitoring of drainage water from the SK detector tank as well. Our real-time monitoring method is expected to support the long-term operation of the SK-Gd project.
引用
收藏
页数:8
相关论文
共 23 条
[11]   Energy levels and lifetimes of GdIV and enhancement of the electron electric dipole moment [J].
Dzuba, VA ;
Sushkov, OP ;
Johnson, WR ;
Safronova, UI .
PHYSICAL REVIEW A, 2002, 66 (03) :321051-321056
[12]  
edmundoptics, Specifications of the Edmund 34-977 bandpass filter
[13]  
hamamatsu, Specifications of the Hamamatsu Photonics R1104 photomultiplier tube
[14]  
He M, 2017, PHYS SCI REV, V2, DOI 10.1515/psr-2016-0059
[15]   Emission characteristics of gadolinium ions in a water Cherenkov detector [J].
Iwata, Y. ;
Sekiya, H. ;
Ito, C. .
PROGRESS OF THEORETICAL AND EXPERIMENTAL PHYSICS, 2022, 2022 (12)
[16]   Luminescence study on the inner-sphere hydration number of lanthanide(III) ions in concentrated aqueous salt solutions in fluid and frozen states [J].
Kimura, T ;
Kato, Y .
JOURNAL OF ALLOYS AND COMPOUNDS, 1998, 278 (1-2) :92-97
[17]   Luminescence spectroscopy of lanthanide(III) ions in solution [J].
Lis, S .
JOURNAL OF ALLOYS AND COMPOUNDS, 2002, 341 (1-2) :45-50
[18]   Luminescence lifetime of lanthanide(III) ions in aqueous solution containing azide ion [J].
Lis, S ;
Kimura, T ;
Yoshida, Z .
JOURNAL OF ALLOYS AND COMPOUNDS, 2001, 323 :125-127
[19]   Evaluation of gadolinium's action on water Cherenkov detector systems with EGADS [J].
Marti, Ll ;
Ikeda, M. ;
Kato, Y. ;
Kishimoto, Y. ;
Nakahata, M. ;
Nakajima, Y. ;
Nakano, Y. ;
Nakayama, S. ;
Okajima, Y. ;
Orii, A. ;
Pronost, G. ;
Sekiya, H. ;
Shiozawa, M. ;
Tanaka, H. ;
Ueno, K. ;
Yamada, S. ;
Yano, T. ;
Yokozawa, T. ;
Murdoch, M. ;
Schuemann, J. ;
Vagins, M. R. ;
Bays, K. ;
Carminati, G. ;
Griskevich, N. J. ;
Kropp, W. R. ;
Locke, S. ;
Renshaw, A. ;
Smy, M. B. ;
Weatherly, P. ;
Ito, S. ;
Ishino, H. ;
Kibayashi, A. ;
Koshio, Y. ;
Mori, T. ;
Sakuda, M. ;
Yamaguchi, R. ;
Fernandez, P. ;
Labarga, L. ;
Bandac, I ;
Perez, J. ;
Amey, J. ;
Litchfield, R. P. ;
Sztuc, A. ;
Uchida, Y. ;
Goldsack, A. ;
Simpson, C. ;
Wark, D. ;
Anthony, L. H., V ;
McCauley, N. ;
Pritchard, A. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2020, 959
[20]   Highly sensitive detection of sodium in aqueous solutions using laser-induced breakdown spectroscopy with liquid sheet jets [J].
Nakanishi, Ryuzo ;
Ohba, Hironori ;
Saeki, Morihisa ;
Wakaida, Ikuo ;
Tanabe-Yamagishi, Rie ;
Ito, Yoshiro .
OPTICS EXPRESS, 2021, 29 (04) :5205-5212