Real-time monitoring method for gadolinium concentration in a water Cherenkov detector

被引:0
作者
Iwata, Yoshihiro [1 ]
Sekiya, Hiroyuki [2 ,3 ]
Ito, Chikara [4 ]
机构
[1] Japan Atom Energy Agcy, Collaborat Labs Adv Decommissioning Sci, 2-4 Shirakata, Naka, Ibaraki 3191195, Japan
[2] Univ Tokyo, Inst Cosm Ray Res, Kamioka Observ, 456 Higashi Mozumi, Hida, Gifu 5061205, Japan
[3] Univ Tokyo, Univ Tokyo Inst Adv Study, Kavli Inst Phys & Math Universe WPI, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778583, Japan
[4] Japan Atom Energy Agcy, Safety & Nucl Secur Adm Head Off, Safety Adm Dept, 2-2-2 Uchisaiwai Cho,Chiyoda Ku, Tokyo 1008577, Japan
来源
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING | 2025年 / 131卷 / 03期
基金
日本学术振兴会;
关键词
Time-resolved laser-induced luminescence spectroscopy; Gadolinium ion emission; Real-time monitoring; Super-Kamiokande (SK) water Cherenkov detector; Laser interaction with liquids; Laser-based analytical methods; INDUCED BREAKDOWN SPECTROSCOPY; LANTHANIDE(III) IONS; LUMINESCENCE;
D O I
10.1007/s00339-025-08283-7
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Time-resolved laser-induced luminescence spectroscopy is useful for real-time measurement of lanthanide ion concentrations in aqueous solution. Gadolinium ions (Gd3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{3+}$$\end{document}), in particular, have a long (similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document}ms) emission lifetime, so that the ion emission can be easily distinguished from scattering of the excitation pulsed laser without the need for a monochromator. In this work, we have developed a real-time monitoring method for Gd concentration in water, aiming at application to the Super-Kamiokande (SK) water Cherenkov detector in which 0.03% Gd is currently dissolved in the form of sulfate for the observation of supernova relic neutrino events. The basic concept is to install a tube to run a portion of the water sample through a quartz cell (2 cm on each side), where a ns-pulsed laser at 266 nm is irradiated to excite Gd3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{3+}$$\end{document} ions. The generated Gd3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{3+}$$\end{document} ion emission at 312 nm is collimated by a lens, transmitted through a bandpass filter, and then detected by a photomultiplier tube placed about 10 cm away from the quartz cell. While lower Gd concentration and higher pulsed laser energy resulted in shorter Gd3+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{3+}$$\end{document} emission lifetime, good linearity was confirmed between Gd concentration and normalized peak emission voltage in the wide range of 1-1000 ppm (0.1%) Gd in ultrapure water. The detection limit, defined as three times the standard deviation of the background level, was determined to be similar to\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sim$$\end{document}60 ppb for Gd sulfate in ultrapure water. This value is about two orders of magnitude better than the reported value using laser-induced breakdown spectroscopy, and is close to that using inductively coupled plasma optical emission spectrometry which requires sample introduction into the spectrometer. Sulfate ions in aqueous solution appear to have a smaller quenching effect than O-H vibrations of water molecules coordinated to the cation. By confirming a detection sensitivity below the ppm-level, this method could be effective for monitoring of drainage water from the SK detector tank as well. Our real-time monitoring method is expected to support the long-term operation of the SK-Gd project.
引用
收藏
页数:8
相关论文
共 23 条
[1]   Second gadolinium loading to Super-Kamiokande [J].
Abe, K. ;
Bronner, C. ;
Hayato, Y. ;
Hiraide, K. ;
Hosokawa, K. ;
Ieki, K. ;
Ikeda, M. ;
Kameda, J. ;
Kanemura, Y. ;
Kaneshima, R. ;
Kashiwagi, Y. ;
Kataoka, Y. ;
Miki, S. ;
Mine, S. ;
Miura, M. ;
Moriyama, S. ;
Nakano, Y. ;
Nakahata, M. ;
Nakayama, S. ;
Noguchi, Y. ;
Sato, K. ;
Sekiya, H. ;
Shiba, H. ;
Shimizu, K. ;
Shiozawa, M. ;
Sonoda, Y. ;
Suzuki, Y. ;
Takeda, A. ;
Takemoto, Y. ;
Tanaka, H. ;
Yano, T. ;
Han, S. ;
Kajita, T. ;
Okumura, K. ;
Tashiro, T. ;
Tomiya, T. ;
Wang, X. ;
Yoshida, S. ;
Fernandez, P. ;
Labarga, L. ;
Ospina, N. ;
Zaldivar, B. ;
Pointon, B. W. ;
Kearns, E. ;
Raaf, J. L. ;
Wan, L. ;
Wester, T. ;
Bian, J. ;
Griskevich, N. J. ;
Smy, M. B. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2024, 1065
[2]   First gadolinium loading to Super-Kamiokande [J].
Abe, K. ;
Bronner, C. ;
Hayato, Y. ;
Hiraide, K. ;
Ikeda, M. ;
Imaizumi, S. ;
Kameda, J. ;
Kanemura, Y. ;
Kataoka, Y. ;
Miki, S. ;
Miura, M. ;
Moriyama, S. ;
Nagao, Y. ;
Nakahata, M. ;
Nakayama, S. ;
Okada, T. ;
Okamoto, K. ;
Orii, A. ;
Pronost, G. ;
Sekiya, H. ;
Shiozawa, M. ;
Sonoda, Y. ;
Suzuki, Y. ;
Takeda, A. ;
Takemoto, Y. ;
Takenaka, A. ;
Tanaka, H. ;
Watanabe, S. ;
Yano, T. ;
Han, S. ;
Kajita, T. ;
Okumura, K. ;
Tashiro, T. ;
Xia, J. ;
Megias, G. D. ;
Bravo-Berguno, D. ;
Labarga, L. ;
Marti, Ll ;
Zaldivar, B. ;
Pointon, B. W. ;
Blaszczyk, F. D. M. ;
Kearns, E. ;
Raaf, J. L. ;
Stone, J. L. ;
Wan, L. ;
Wester, T. ;
Bian, J. ;
Griskevich, N. J. ;
Kropp, W. R. ;
Locke, S. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2022, 1027
[3]   Calibration of the Super-Kamiokande detector [J].
Abe, K. ;
Hayato, Y. ;
Iida, T. ;
Iyogi, K. ;
Kameda, J. ;
Kishimoto, Y. ;
Koshio, Y. ;
Marti, Ll ;
Miura, M. ;
Moriyama, S. ;
Nakahata, M. ;
Nakano, Y. ;
Nakayama, S. ;
Obayashi, Y. ;
Sekiya, H. ;
Shiozawa, M. ;
Suzuki, Y. ;
Takeda, A. ;
Takenaga, Y. ;
Tanaka, H. ;
Tomura, T. ;
Ueno, K. ;
Wendell, R. A. ;
Yokozawa, T. ;
Irvine, T. J. ;
Kaji, H. ;
Kajita, T. ;
Kaneyuki, K. ;
Lee, K. P. ;
Nishimura, Y. ;
Okumura, K. ;
McLachlan, T. ;
Labarga, L. ;
Kearns, E. ;
Raaf, J. L. ;
Stone, J. L. ;
Sulak, L. R. ;
Berkman, S. ;
Tanaka, H. A. ;
Tobayama, S. ;
Goldhaber, M. ;
Bays, K. ;
Carminati, G. ;
Kropp, W. R. ;
Mine, S. ;
Renshaw, A. ;
Smy, M. B. ;
Sobel, H. W. ;
Ganezer, K. S. ;
Hill, J. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2014, 737 :253-272
[4]   Laser-induced breakdown spectroscopy for simultaneous determination of Sm, Eu and Gd in aqueous solution [J].
Alamelu, D. ;
Sarkar, A. ;
Aggarwal, S. K. .
TALANTA, 2008, 77 (01) :256-261
[5]  
[Anonymous], 2020, Agilent ICP-MS Journal
[6]  
[Anonymous], Minilite Operation Manual
[7]   Antineutrino spectroscopy with large water Cerenkov detectors [J].
Beacom, JF ;
Vagins, MR .
PHYSICAL REVIEW LETTERS, 2004, 93 (17) :171101-1
[8]   Quantification of 68 elements in river water monitoring samples in single-run measurements [J].
Belkouteb, Nadine ;
Schroeder, Henning ;
Arndt, Julia ;
Wiederhold, Jan G. ;
Ternes, Thomas A. ;
Duester, Lars .
CHEMOSPHERE, 2023, 320
[9]  
Bunzli J.-C.G., 2010, BASICS LANTHANIDE PH, V7, P1, DOI DOI 10.1007/4243_2010_3
[10]  
Carnall W.T., 1979, Handbook on the Physics and Chemistry of the Rare Earths, V1, P172, DOI [10.1016/S0168-1273(79)03007-5, DOI 10.1016/S0168-1273(79)03007-5]