Joule heating and viscous dissipation impact on MHD-hybrid nanofluid flow over non-isothermal stretching/shrinking surface: Dual solution and stability analysis

被引:0
|
作者
Idris, Sakinah [1 ]
Jamaludin, Anuar [1 ]
Nazar, Roslinda [2 ]
Pop, Ioan [3 ]
机构
[1] Univ Pertahanan Nas Malaysia, Dept Math, Kuala Lumpur 57000, Malaysia
[2] Univ Kebangsaan Malaysia, Fac Sci & Technol, Dept Math Sci, Bangi 43600, Selangor, Malaysia
[3] Babes Bolyai Univ, Dept Math, R-400084 Cluj Napoca, Romania
关键词
Hybrid nanofluid; Joule heating; Magnetohydrodynamic; Non-isothermal; Viscous dissipation; BOUNDARY-LAYER-FLOW; STAGNATION-POINT; MIXED CONVECTION; VERTICAL SURFACE; SHEET; FLUID; BEHAVIOR;
D O I
10.1016/j.cjph.2024.12.019
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Recent scientific research has consistently demonstrated that hybrid nanofluids have superior thermophysical properties, promising heat transfer efficiency improvers in engineering applications. Thus, the aim of this study is to numerically examine the effects of the magnetohydrodynamic (MHD), suction, Joule heating and viscous dissipation parameter on the intricate flow and thermal transfer dynamics of a hybrid nanofluid streaming over a permeable non-isothermal surface with a further investigation into duality of solutions. Similarity transformation reduced the governing equations into ordinary differential equations (ODEs), which were resolved using the MATLAB bvp4c function. The concurrent effects of the governing parameters on the temperature and velocity profiles, local skin friction coefficient, and the local Nusselt number were examined by hybridizing magnetite (Fe3O4) and multi-walled carbon nanotubes (MWCNT) immersed in water. The most notable finding of this study reported a higher magnetic parameter and nanoparticle volume concentration increased the skin friction coefficient in the shrinking region. Remarkably, a higher Eckert number increased the thermal boundary layer and reduced the heat transfer rate. Stability analysis confirmed that the first solution was physically stable and reliable. These discoveries contribute valuable insights into optimizing heat transfer in advanced engineering systems where precise thermal control is critical and guidance for scholars in investigating the experimental or numerical dimensions of flow dynamic of hybrid nanofluid.
引用
收藏
页码:611 / 631
页数:21
相关论文
共 50 条
  • [1] Viscous dissipation and MHD hybrid nanofluid flow towards an exponentially stretching/shrinking surface
    N. A. Zainal
    R. Nazar
    K. Naganthran
    I. Pop
    Neural Computing and Applications, 2021, 33 : 11285 - 11295
  • [2] Viscous dissipation and MHD hybrid nanofluid flow towards an exponentially stretching/shrinking surface
    Zainal, N. A.
    Nazar, R.
    Naganthran, K.
    Pop, I.
    NEURAL COMPUTING & APPLICATIONS, 2021, 33 (17): : 11285 - 11295
  • [3] Hybrid Nanofluid Flow over a Permeable Non-Isothermal Shrinking Surface
    Waini, Iskandar
    Ishak, Anuar
    Pop, Ioan
    MATHEMATICS, 2021, 9 (05) : 1 - 19
  • [4] Dual Solutions and Stability Analysis of a Hybrid Nanofluid over a Stretching/Shrinking Sheet Executing MHD Flow
    Lund, Liaquat Ali
    Omar, Zurni
    Khan, Ilyas
    Sherif, El-Sayed M.
    SYMMETRY-BASEL, 2020, 12 (02):
  • [5] Numerical treatment of hybrid water based nanofluid flow with effect of dissipation and Joule heating over a shrinking surface: Stability analysis
    Rasool, Ghulam
    Wang, Xinhua
    Yashkun, Ubaidullah
    Lund, Liaquat Ali
    Shahzad, Hasan
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2023, 571
  • [6] Combined effects of viscous dissipation and Joule heating on MHD Sisko nanofluid over a stretching cylinder
    Hussain, Arif
    Malik, M. Y.
    Salahuddin, T.
    Bilal, S.
    Awais, M.
    JOURNAL OF MOLECULAR LIQUIDS, 2017, 231 : 341 - 352
  • [7] Radiative and magnetohydrodynamic micropolar hybrid nanofluid flow over a shrinking sheet with Joule heating and viscous dissipation effects
    Waini, Iskandar
    Ishak, Anuar
    Pop, Ioan
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (05): : 3783 - 3794
  • [8] Radiative and magnetohydrodynamic micropolar hybrid nanofluid flow over a shrinking sheet with Joule heating and viscous dissipation effects
    Iskandar Waini
    Anuar Ishak
    Ioan Pop
    Neural Computing and Applications, 2022, 34 : 3783 - 3794
  • [9] Thermal Performance of MHD Nanofluid Flow Over a Stretching Sheet Due to Viscous Dissipation, Joule Heating and Thermal Radiation
    Mishra A.
    Kumar M.
    International Journal of Applied and Computational Mathematics, 2020, 6 (4)
  • [10] Non-similar analysis of MHD hybrid nanofluid flow over an exponentially stretching/shrinking sheet with the influences of thermal radiation and viscous dissipation
    Razzaq, Raheela
    Farooq, Umer
    NUMERICAL HEAT TRANSFER PART B-FUNDAMENTALS, 2024,