Radiative Cooling Nanohybrids with Room-Temperature Switching

被引:1
作者
Dai, Yuancong [1 ]
Zhang, Yibo [1 ]
Ye, Zhiwei [1 ]
Zhu, Zhenyu [1 ]
Yang, Luhai [1 ]
Wei, Yuhao [1 ]
Qin, Hongmei [1 ]
Xiong, Chuanxi [1 ]
机构
[1] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Peoples R China
基金
中国国家自然科学基金;
关键词
radiative cooling; nanohybrids; electrospinning; room-temperature switching; antileakage; NANOPARTICLES;
D O I
10.1021/acsami.4c22102
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recent advancements in radiative cooling technologies have highlighted their potential as sustainable and environmentally friendly cooling solutions. However, while this method offers significant energy savings during hot seasons, it may incur energy losses (overcooling leads to a waste of cooling energy) in colder conditions. The current solution has the problems of a complex process or easy leakage of materials. To address this challenge, we synthesized a SiO2 nanohybrid (a SiO2 nanoparticle with elongated polymer chains grafted onto its surface), which modifies the thermoresponsive behavior of radiative cooling composites. Upon incorporation of these nanohybrids into the radiative cooling matrix, it will display significant morphological changes in response to temperature variations, leading to changes in the emissivity of the resulting composite film. What's more, the reflectivity of the composite film was enhanced from 57.26 to 89.37%, increasing the cooling performance by 4 degrees C in hot weather. Results confirmed that the composite film maintained structural integrity without leakage, demonstrating a robust durability. Overall, the synthesized SiO2 nanohybrids in this work will offer valuable insights for advancing radiative cooling applications.
引用
收藏
页码:12698 / 12706
页数:9
相关论文
共 43 条
  • [21] Ma B., Cheng Y., Hu P., Fang D., Wang J., Passive Daytime Radiative Cooling of Silica Aerogels, Nanomaterials, 13, 3, (2023)
  • [22] Fei J., Han D., Zhang X., Li K., Lavielle N., Zhou K., Wang X., Tan J.Y., Zhong J., Wan M.P., Nefzaoui E., Bourouina T., Li S., Ng B.F., Cai L., Li H., Ultrahigh Passive Cooling Power in Hydrogel with Rationally Designed Optofluidic Properties, Nano Lett., 24, 2, pp. 623-631, (2024)
  • [23] Li B., Hu J., Chen C., Hu H., Zhong Y., Song R., Cao B., Peng Y., Xia X., Chen K., Xia Z., Theoretical Study of a Highly Fault-Tolerant and Scalable Adaptive Radiative Cooler, Nanophotonics, 13, 5, pp. 725-736, (2024)
  • [24] Xie H., Yin H., Fan C., Realization of an Adaptive Radiative Cooler with a Multilayer-Filter VO<sub>2</sub>-Based Fabry-Perot Cavity, Chin. Phys. Lett., 41, 4, (2024)
  • [25] Su W., Cai P., Kang R., Wang L., Kokogiannakis G., Chen J., Gao L., Li A., Xu C., Development of Temperature-Responsive Transmission Switch Film (TRTSF) Using Phase Change Material for Self-Adaptive Radiative Cooling, Appl. Energy, 322, (2022)
  • [26] Zhang Y., Liu X., Li Z., Xie W., Lou X., Fan Y., Cao K., Liu G., Kondo H., Zhou H., Colourful Phase Change Material-Incorporated Flexible Film for Efficient Passive Radiative Cooling, Nanotechnology, 34, 41, (2023)
  • [27] Han T., Zhou Z., Du Y., Wang W., Wang C., Yang X., Liu J., Yang H., Cui H., Yan J., Advances in Radiative Sky Cooling Based on the Promising Electrospinning, Renewable Sustainbale Energy Rev., 200, (2024)
  • [28] Xiang B., Xu P., Li R., Zhang R., Phase Change Material-Based Film Toward Enhanced Radiative Cooling and Mitigation of Overcooling, ACS Appl. Polym. Mater., 6, 1, pp. 515-523, (2024)
  • [29] Weng K., Qian R., Xu X., Zou D., Exploring Key Factors of Radiative Cooling Performance of N-Octadecane@SiO<sub>2</sub> Mepcms, Int. J. Heat Mass Transfer, 234, (2024)
  • [30] Li D., Wu J., Xu X., Wang X., Yang S., Tang Z., Shen H., Liu X., Zhao N., Xu J., Solvent Free Nanoscale Ionic Materials Based on Fe<sub>3</sub>O<sub>4</sub> Nanoparticles Modified with Mussel Inspired Ligands, J. Colloid Interface Sci., 531, pp. 404-409, (2018)