Optimizing Battery Charge Prediction Accuracy Utilizing Machine Learning Methods

被引:0
|
作者
Manimegalai, R. [1 ]
Sivakumar, S. [2 ]
Haidari, Moazzam [3 ]
Bheemalingaiah, M. [4 ]
Balaramesh, P. [5 ]
Yadav, Loya Chandrajit [6 ]
机构
[1] Saveetha Univ, Saveetha Inst Med & Tech Sci, Saveetha Sch Engn, Dept Elect & Elect Engn, Chennai, India
[2] Vel Tech Rangarajan Dr Sagunthala R&D Inst Sci & T, Dept Elect & Elect Engn, Chennai, Tamilnadu, India
[3] Saharsa Coll Engn, Dept Elect Engn, Saharsa, Bihar, India
[4] JB Inst Engn & Technol, Dept Comp Sci & Engn, Hyderabad, India
[5] RMK Engn Coll, Dept Sci & Humanities, Kavaraipettai, India
[6] Koneru Lakshmaiah Educ Fdn, Dept Comp Sci & Engn, Vaddeswaram, Vijayawada, India
关键词
Machine Learning; Explainable Artificial Intelligence; Shapley Additive Explanations; Lithium-Ion Batteries; Energy Storage Systems;
D O I
暂无
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
Energy storage systems are more cost-effective when they correctly manage the capacity for lithium-ion batteries (LiBs), especially when they are used on a big scale. The design saves money, in the long run, to repair or fix LiBs less often. To determine the amount that LiBs were capable of holding, adaptive boosting (AdaBoost), extreme gradient boosting (XGBoost), gradient boosting, light gradient boosting machine (LightGBM), category boosting (CatBoost), as well as ensemble learning models are utilized. Employing the mean absolute error (MAE), and the mean squared error (MSE) along R2 numbers, the researcher compared the accuracy with which each model could predict future outcomes. For example, the LightGBM model had the least MAE (0.102) as well as MSE (0.018) values, as well as the greatest R-squared (0.886) value, which means that its predictions were most closely related to reality. It was about the same in terms of speed among the gradient boosting as well as XGBoost models, which came next to LightGBM. The ensemble model's efficiency suggests that integrating many models might result in an overall increase in performance. In addition, the research uses Shapley additive explanations (SHAP) values to analyze important aspects influencing model predictions within the context of explainable artificial intelligence (XAI). This study found that discharge capacity is strongly influenced by temperature, cycle index, voltage, and power. This study demonstrates that Machine Learning (ML) methods can improve energy storage systems and regulate LiB in XAI.
引用
收藏
页码:238 / 248
页数:11
相关论文
共 50 条
  • [31] Optimizing the Prediction of Depression Remission: A Longitudinal Machine Learning Approach
    Carr, Ewan
    Rietschel, Marcella
    Mors, Ole
    Henigsberg, Neven
    Aitchison, Katherine J.
    Maier, Wolfgang
    Uher, Rudolf
    Farmer, Anne
    Mcguffin, Peter
    Iniesta, Raquel
    AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2025, 198 (03)
  • [32] Machine Learning Methods for Septic Shock Prediction
    Darwiche, Aiman
    Mukherjee, Sumitra
    AIVR 2018: 2018 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND VIRTUAL REALITY, 2018, : 104 - 110
  • [33] A machine learning-based battery management system for state-of-charge prediction and state-of-health estimation for unmanned aerial vehicles
    Shibl, Mostafa M.
    Ismail, Loay S.
    Massoud, Ahmed M.
    JOURNAL OF ENERGY STORAGE, 2023, 66
  • [34] Battery Remaining Useful Life Prediction Using Machine Learning Models: A Comparative Study
    Safavi, Vahid
    Vaniar, Arash Mohammadi
    Bazmohammadi, Najmeh
    Vasquez, Juan C.
    Guerrero, Josep M.
    INFORMATION, 2024, 15 (03)
  • [35] Coupling a capacity fade model with machine learning for early prediction of the battery capacity trajectory
    Li, Tingkai
    Liu, Jinqiang
    Thelen, Adam
    Mishra, Ankush Kumar
    Yang, Xiao-Guang
    Wang, Zhaoyu
    Hu, Chao
    APPLIED ENERGY, 2025, 389
  • [36] Battery Health Prediction Using Fusion-Based Feature Selection and Machine Learning
    Hu, Xiaosong
    Che, Yunhong
    Lin, Xianke
    Onori, Simona
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2021, 7 (02) : 382 - 398
  • [37] Machine Learning-based Electric Vehicle Battery State of Charge Prediction and Driving Range Estimation for Rural Applications
    Eissa, Magdy Abdullah
    Chen, Pingen
    IFAC PAPERSONLINE, 2023, 56 (03): : 355 - 360
  • [38] Utilizing GIS and Machine Learning for Traffic Accident Prediction in Urban Environment
    Khan, Atif Ali
    Hussain, Jawad
    CIVIL ENGINEERING JOURNAL-TEHRAN, 2024, 10 (06): : 1922 - 1935
  • [39] A journal bearing performance prediction method utilizing a machine learning technique
    Rossopoulos, Georgios N.
    Papadopoulos, Christos, I
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART J-JOURNAL OF ENGINEERING TRIBOLOGY, 2022, 236 (10) : 1993 - 2003
  • [40] Machine Learning Methods for Disease Prediction with Claims Data
    Christensen, Tanner
    Frandsen, Abraham
    Glazier, Seth
    Humpherys, Jeffrey
    Kartchner, David
    2018 IEEE INTERNATIONAL CONFERENCE ON HEALTHCARE INFORMATICS (ICHI), 2018, : 467 - 471