The utilization of artificial intelligence in glaucoma: diagnosis versus screening

被引:3
作者
Alshawabkeh, Mo'ath [1 ]
Alryalat, Saif Aldeen [2 ,3 ]
Al Bdour, Muawyah [2 ]
Alni'mat, Ayat [1 ]
Al-Akhras, Mousa [4 ]
机构
[1] Al Taif Eye Ctr, Dept Ophthalmol, Amman, Jordan
[2] Univ Jordan, Dept Ophthalmol, Amman, Jordan
[3] Houston Methodist Hosp, Dept Ophthalmol, Houston, TX USA
[4] Univ Jordan, Sch Informat Technol & Syst, Dept Comp Informat Syst, Amman, Jordan
来源
FRONTIERS IN OPHTHALMOLOGY | 2024年 / 4卷
关键词
glaucoma; artificial intelligence; screening; diagnosis; deep learning; OPTICAL COHERENCE TOMOGRAPHY; NEURAL-NETWORK; CLASSIFIERS; SYSTEM;
D O I
10.3389/fopht.2024.1368081
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
With advancements in the implementation of artificial intelligence (AI) in different ophthalmology disciplines, it continues to have a significant impact on glaucoma diagnosis and screening. This article explores the distinct roles of AI in specialized ophthalmology clinics and general practice, highlighting the critical balance between sensitivity and specificity in diagnostic and screening models. Screening models prioritize sensitivity to detect potential glaucoma cases efficiently, while diagnostic models emphasize specificity to confirm disease with high accuracy. AI applications, primarily using machine learning (ML) and deep learning (DL), have been successful in detecting glaucomatous optic neuropathy from colored fundus photographs and other retinal imaging modalities. Diagnostic models integrate data extracted from various forms of modalities (including tests that assess structural optic nerve damage as well as those evaluating functional damage) to provide a more nuanced, accurate and thorough approach to diagnosing glaucoma. As AI continues to evolve, the collaboration between technology and clinical expertise should focus more on improving specificity of glaucoma diagnostic models to assess ophthalmologists to revolutionize glaucoma diagnosis and improve patients care.
引用
收藏
页数:7
相关论文
共 54 条
[1]   Artificial Intelligence for Glaucoma Creating and Implementing Artificial Intelligence for Disease Detection and Progression [J].
Al-Aswad, Lama A. ;
Ramachandran, Rithambara ;
Schuman, Joel S. ;
Medeiros, Felipe ;
Eydelman, Malvina B. .
OPHTHALMOLOGY GLAUCOMA, 2022, 5 (05) :E16-E25
[2]   Designs and Methodologies Used in Landmark Clinical Trials of Glaucoma: Implications for Future Big Data Mining and Actionable Disease Treatment [J].
AlRyalat, Saif Aldeen ;
Ertel, Monica K. ;
Seibold, Leonard K. ;
Kahook, Malik Y. .
FRONTIERS IN MEDICINE, 2022, 9
[3]   Machine learning on glaucoma: the missing point [J].
AlRyalat, Saif Aldeen .
EYE, 2021, 35 (09) :2456-2457
[4]   Comparison of clinicians and an artificial neural network regarding accuracy and certainty in performance of visual field assessment for the diagnosis of glaucoma [J].
Andersson, Sabina ;
Heijl, Anders ;
Bizios, Dimitrios ;
Bengtsson, Boel .
ACTA OPHTHALMOLOGICA, 2013, 91 (05) :413-417
[5]   When Artificial Intelligence Models Surpass Physician Performance: Medical Malpractice Liability in an Era of Advanced Artificial Intelligence [J].
Banja, John D. ;
Hollstein, Rolf Dieter ;
Bruno, Michael A. .
JOURNAL OF THE AMERICAN COLLEGE OF RADIOLOGY, 2022, 19 (07) :816-820
[6]   Glaucoma Diagnostic Accuracy of Machine Learning Classifiers Using Retinal Nerve Fiber Layer and Optic Nerve Data from SD-OCT [J].
Barella, Kleyton Arlindo ;
Costa, Vital Paulino ;
Vidotti, Vanessa Goncalves ;
Silva, Fabricio Reis ;
Dias, Marcelo ;
Gomi, Edson Satoshi .
JOURNAL OF OPHTHALMOLOGY, 2013, 2013
[7]   Learning from healthy and stable eyes: A new approach for detection of glaucomatous progression [J].
Belghith, Akram ;
Bowd, Christopher ;
Medeiros, Felipe A. ;
Balasubramanian, Madhusudhanan ;
Weinreb, Robert N. ;
Zangwill, Linda M. .
ARTIFICIAL INTELLIGENCE IN MEDICINE, 2015, 64 (02) :105-115
[8]   More frequent, more costly? Health economic modelling aspects of monitoring glaucoma patients in England [J].
Boodhna, Trishal ;
Crabb, David P. .
BMC HEALTH SERVICES RESEARCH, 2016, 16
[9]   Glaucomatous Patterns in Frequency Doubling Technology (FDT) Perimetry Data Identified by Unsupervised Machine Learning Classifiers [J].
Bowd, Christopher ;
Weinreb, Robert N. ;
Balasubramanian, Madhusudhanan ;
Lee, Intae ;
Jang, Giljin ;
Yousefi, Siamak ;
Zangwill, Linda M. ;
Medeiros, Felipe A. ;
Girkin, Christopher A. ;
Liebmann, Jeffrey M. ;
Goldbaum, Michael H. .
PLOS ONE, 2014, 9 (01)
[10]   Optical coherence tomography machine learning classifiers for glaucoma detection: A preliminary study [J].
Burgansky-Eliash, Z ;
Wollstein, G ;
Chu, TJ ;
Ramsey, JD ;
Glymour, C ;
Noecker, RJ ;
Ishikawa, H ;
Schuman, JS .
INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2005, 46 (11) :4147-4152