Multiple solutions for a parametric Steklov problem involving the p(x)-Laplacian operator

被引:0
作者
Abdou, Aboubacar [1 ]
Gazibo, Mohamed Karimou [1 ]
Marcos, Aboubacar [2 ]
机构
[1] Univ Abdou Moumouni, Ecole Normale Super, Dept Math, Niamey, Niger
[2] Univ Abomey Calavi, Inst Math & Sci Phys, Porto Novo, Benin
关键词
Steklov problem; p ( x )-Laplacian operator; generalized Lebesgue-Sobolev spaces; variational method; Mountain Pass Theorem; Fountain Theorem; Dual Fountain Theorem; VARIABLE EXPONENT; DIRICHLET PROBLEMS; EXISTENCE; EQUATIONS; SPACES; EIGENVALUES; SPECTRUM;
D O I
10.14232/ejqtde.2025.1.4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the existence and multiplicity of weak solutions for a Steklov problem involving p(x)-Laplacian operator in a bounded domain ohm subset of R-N (N >= 2) with smooth boundary partial derivative ohm. The boundary equation is perturbed with some weight functions belonging to approriate generalized Lebesgue spaces and two real parameters. Our arguments are based on variational method, using "Mountain Pass Theorem", "Fountain Theorem" and "Dual Fountain Theorem" combined with the critical points theory, we prove several existence results.
引用
收藏
页码:1 / 27
页数:27
相关论文
共 51 条
[1]  
Abdou Aboubacar, 2016, EXISTENCE AND MULTIPLICITY OF SOLUTIONS FOR A DIRICHLET PROBLEM INVOLVING PERTURBED
[2]   Infinitely many solutions for Steklov problems associated to non-homogeneous differential operators through Orlicz-Sobolev spaces [J].
Afrouzi, Ghasem A. ;
Heidarkhani, Shapour ;
Shokooh, Saeid .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (11) :1505-1521
[3]  
Afrouzi GA, 2014, ELECTRON J DIFFER EQ
[4]   CONTINUOUS SPECTRUM OF STEKLOV NONHOMOGENEOUS ELLIPTIC PROBLEM [J].
Allaoui, Mostafa .
OPUSCULA MATHEMATICA, 2015, 35 (06) :853-866
[5]  
Allaoui M, 2014, ELECTRON J QUAL THEO, P1
[6]  
Allaoui M, 2012, ELECTRON J DIFFER EQ
[7]   An Asymmetric Steklov Problem With Weights: the singular case [J].
Anane, A. ;
Chakrone, O. ;
Karim, B. ;
Zerouali, A. .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2009, 27 (02) :35-42
[8]   Existence of solutions for a Steklov problem involving the p(x)-Laplacian [J].
Anane, Aomar ;
Chakrone, Omar ;
Zerouali, Abdellah ;
Karim, Belhadj .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2014, 32 (01) :205-213
[9]   The beginning of the Fucik spectrum for a Steklov Problem [J].
Anane, Aomar ;
Chakrone, Omar ;
Karim, Belhadj ;
Zerouali, Abdellah .
BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2009, 27 (01) :21-27
[10]   Nonresonance between the first two eigenvalues for a Steklov problem [J].
Anane, Aomar ;
Chakrone, Omar ;
Karim, Belhadj ;
Zerouali, Abdellah .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (06) :2974-2981