Conservative SPDEs as fluctuating mean field limits of stochastic gradient descent

被引:0
作者
Gess, Benjamin [1 ,2 ]
Gvalani, Rishabh S. [3 ]
Konarovskyi, Vitalii [4 ,5 ]
机构
[1] Tech Univ Berlin, Inst Math, Str 17,Juni 136, D-10623 Berlin, Germany
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
[3] Swiss Fed Inst Technol, D MATH, CH-8092 Zurich, Switzerland
[4] Univ Hamburg, Fak Math Informat & Nat Wissensch, D-20146 Hamburg, Germany
[5] NAS Ukraine, Inst Math, UA-01024 Kyiv, Ukraine
关键词
Stochastic gradient descent; Machine learning; Overparametrization; Dean-Kawasaki equation; SDE with interaction; Fluctuation mean field limit; Law of large numbers; Central limit theorem; PARTIAL-DIFFERENTIAL-EQUATIONS; NEURAL-NETWORKS; SYSTEM; DEVIATIONS; PARTICLES; MODEL;
D O I
10.1007/s00440-024-01353-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The convergence of stochastic interacting particle systems in the mean-field limit to solutions of conservative stochastic partial differential equations is established, with optimal rate of convergence. As a second main result, a quantitative central limit theorem for such SPDEs is derived, again, with optimal rate of convergence. The results apply, in particular, to the convergence in the mean-field scaling of stochastic gradient descent dynamics in overparametrized, shallow neural networks to solutions of SPDEs. It is shown that the inclusion of fluctuations in the limiting SPDE improves the rate of convergence, and retains information about the fluctuations of stochastic gradient descent in the continuum limit.
引用
收藏
页数:69
相关论文
共 50 条
  • [41] Fractional stochastic gradient descent for recommender systems
    Zeshan Aslam Khan
    Naveed Ishtiaq Chaudhary
    Syed Zubair
    Electronic Markets, 2019, 29 : 275 - 285
  • [42] Stochastic gradient descent for wind farm optimization
    Quick, Julian
    Rethore, Pierre-Elouan
    Pedersen, Mads Molgaard
    Rodrigues, Rafael Valotta
    Friis-Moller, Mikkel
    WIND ENERGY SCIENCE, 2023, 8 (08) : 1235 - 1250
  • [43] Online inference with debiased stochastic gradient descent
    Han, Ruijian
    Luo, Lan
    Lin, Yuanyuan
    Huang, Jian
    BIOMETRIKA, 2024, 111 (01) : 93 - 108
  • [44] Bolstering stochastic gradient descent with model building
    Birbil, S. Ilker
    Martin, Ozgur
    Onay, Gonenc
    Oztoprak, Figen
    TOP, 2024, 32 (03) : 517 - 536
  • [45] Error Analysis of Stochastic Gradient Descent Ranking
    Chen, Hong
    Tang, Yi
    Li, Luoqing
    Yuan, Yuan
    Li, Xuelong
    Tang, Yuanyan
    IEEE TRANSACTIONS ON CYBERNETICS, 2013, 43 (03) : 898 - 909
  • [46] Ant colony optimization and stochastic gradient descent
    Meuleau, N
    Dorigo, M
    ARTIFICIAL LIFE, 2002, 8 (02) : 103 - 121
  • [47] Distributed stochastic gradient descent with discriminative aggregating
    Chen, Zhen-Hong
    Lan, Yan-Yan
    Guo, Jia-Feng
    Cheng, Xue-Qi
    Jisuanji Xuebao/Chinese Journal of Computers, 2015, 38 (10): : 2054 - 2063
  • [48] Fuzzy Kernel Stochastic Gradient Descent Machines
    Tuan Nguyen
    Phuong Duong
    Trung Le
    Anh Le
    Viet Ngo
    Dat Tran
    Ma, Wanli
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 3226 - 3232
  • [49] Optimal stochastic gradient descent algorithm for filtering
    Turali, M. Yigit
    Koc, Ali T.
    Kozat, Suleyman S.
    DIGITAL SIGNAL PROCESSING, 2024, 155
  • [50] Stochastic gradient descent for barycenters in Wasserstein space
    Backhoff, Julio
    Fontbona, Joaquin
    Rios, Gonzalo
    Tobar, Felipe
    JOURNAL OF APPLIED PROBABILITY, 2025, 62 (01) : 15 - 43