A short proof of Helson's conjecture

被引:0
作者
Gorodetsky, Ofir [1 ]
Wong, Mo Dick [2 ]
机构
[1] Technion Israel Inst Technol, Dept Math, Haifa, Israel
[2] Univ Durham, Dept Math Sci, Stockton Rd, Durham DH1 3LE, England
基金
欧洲研究理事会;
关键词
GAUSSIAN MULTIPLICATIVE CHAOS;
D O I
10.1112/blms.70015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let alpha:N -> S1$\alpha \colon \mathbb {N}\rightarrow S<^>1$ be the Steinhaus multiplicative function: a completely multiplicative function such that (alpha(p))pprime$(\alpha (p))_{p\text{ prime}}$ are i.i.d. random variables uniformly distributed on the complex unit circle S1$S<^>1$. Helson conjectured that E|& sum;n <= x alpha(n)|=o(x)$\mathbb {E}|\sum _{n\leqslant x}\alpha (n)|=o(\sqrt {x})$ as x ->infinity$x \rightarrow \infty$, and this was solved in a strong form by Harper. We give a short proof of the conjecture using a result of Saksman and Webb on a random model for the zeta function.
引用
收藏
页码:1065 / 1076
页数:12
相关论文
共 15 条
[1]   An elementary approach to Gaussian multiplicative chaos [J].
Berestycki, Nathanael .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2017, 22
[2]  
Cojocaru A. C., 2006, INTRO SIEVE METHODS, V66
[3]  
de Bruijn NG, 1951, INDAG MATH, V13, P50, DOI DOI 10.1016/S1385-7258(51)50008-2
[4]   Renormalization of Critical Gaussian Multiplicative Chaos and KPZ Relation [J].
Duplantier, Bertrand ;
Rhodes, Remi ;
Sheffield, Scott ;
Vargas, Vincent .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2014, 330 (01) :283-330
[5]  
Gu H., 2024, ARXIV
[6]  
Harper A. J., 2023, ARXIV
[7]   MOMENTS OF RANDOM MULTIPLICATIVE FUNCTIONS, I: LOW MOMENTS, BETTER THAN SQUAREROOT CANCELLATION, AND CRITICAL MULTIPLICATIVE CHAOS [J].
Harper, Adam J. .
FORUM OF MATHEMATICS PI, 2020, 8
[8]   Hankel forms [J].
Helson, Henry .
STUDIA MATHEMATICA, 2010, 198 (01) :79-84
[10]  
Montgomery H. L., 2007, Multiplicative number theory I: Classical theory, V97