A holistic view over ontologies for Streaming Linked Data

被引:1
|
作者
Bonte, Pieter [1 ,2 ]
Ongenae, Femke [2 ]
Tommasini, Riccardo [3 ,4 ]
机构
[1] Katholieke Univ Leuven, Dept Comp Sci, Campus Kulak, Kortrijk, Belgium
[2] Ghent, IMEC, Ghent, Belgium
[3] INSA Lyon, LIRIS, Lyon, France
[4] Univ Tartu, Tartu, Estonia
关键词
Stream Reasoning; RDF Stream Processing; Web Stream Processing; Knowledge Representation; CONTINUOUS QUERY LANGUAGE; DATA ANALYTICS; SEMANTICS; MODEL; WEB; FRAMEWORK; THINGS; SCALE;
D O I
10.3233/SW-243570
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Streaming Linked Data represents a domain within the Semantic Web dedicated to incorporating Stream Reasoning capabilities into the Semantic Web stack to address dynamic data challenges. Such applied endeavours typically necessitate a robust data modelling process. To this end, RDF Stream Processing (RSP) engines frequently utilize OWL 2 ontologies to facilitate this requirement. Despite the rich body of research on Knowledge Representation (KR), even concerning time-sensitive data, a notable gap exists in the literature regarding a comprehensive survey on KR techniques tailored for Streaming Linked Data. This paper critically overviews the key ontologies employed in RSP applications, evaluating their data modelling and KR abilities specifically for Streaming Linked Data contexts. We analyze these ontologies through three distinct KR perspectives: the conceptualization of streams as Web resources, the structural organization of data streams, and the event modelling within the streams. An analytical framework is introduced for each perspective to ensure a thorough and equitable comparison and deepen the understanding of the surveyed ontologies.
引用
收藏
页码:2005 / 2033
页数:29
相关论文
共 50 条
  • [1] Streaming linked data: A survey on life cycle compliance
    Bonte, Pieter
    Tommasini, Riccardo
    JOURNAL OF WEB SEMANTICS, 2023, 77
  • [2] Educational Data Mining: an holistic view
    Moscoso-Zea, Oswaldo
    Lujan-Mora, Sergio
    2016 11TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2016,
  • [3] Linking and Building Ontologies of Linked Data
    Parundekar, Rahul
    Knoblock, Craig A.
    Ambite, Jose Luis
    SEMANTIC WEB-ISWC 2010, PT I, 2010, 6496 : 598 - +
  • [4] Proactive Policy for Efficiently Updating Join Views on Continuous Queries Over Data Streams and Linked Data
    Chun, Sejin
    Jung, Jooik
    Lee, Kyong-Ho
    IEEE ACCESS, 2019, 7 : 86226 - 86241
  • [5] A Holistic View of Data Warehousing in Education
    Moscoso-Zea, Oswaldo
    Paredes-Gualtor, Joel
    Lujan-Mora, Sergio
    IEEE ACCESS, 2018, 6 : 64659 - 64673
  • [6] Streaming the Web: Reasoning over dynamic data
    Margara, Alessandro
    Urbani, Jacopo
    van Harmelen, Frank
    Bal, Henri
    JOURNAL OF WEB SEMANTICS, 2014, 25 : 24 - 44
  • [7] Wildfire monitoring using satellite images, ontologies and linked geospatial data
    Kyzirakos, K.
    Karpathiotakis, M.
    Garbis, G.
    Nikolaou, C.
    Bereta, K.
    Papoutsis, I.
    Herekakis, T.
    Michail, D.
    Koubarakis, M.
    Kontoes, C.
    JOURNAL OF WEB SEMANTICS, 2014, 24 : 18 - 26
  • [8] Linking Search Results, Bibliographical Ontologies and Linked Open Data Resources
    Ricci, Fabio
    Belmonte, Javier
    Blumer, Eliane
    Schneider, Rene
    METADATA AND SEMANTICS RESEARCH, MTSR 2013, 2013, 390 : 60 - 66
  • [9] Streaming MASSIF: Cascading Reasoning for Efficient Processing of IoT Data Streams
    Bonte, Pieter
    Tommasini, Riccardo
    Della Valle, Emanuele
    De Turck, Filip
    Ongenae, Femke
    SENSORS, 2018, 18 (11)
  • [10] Predicting Over-Indebtedness on Batch and Streaming Data
    Montiel, Jacob
    Bifet, Albert
    Abdessalem, Talel
    2017 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2017, : 1504 - 1513