Transformation-Equivariant 3D Object Detection for Autonomous Driving

被引:0
|
作者
Wu, Hai [1 ,2 ]
Wen, Chenglu [1 ]
Li, Wei [2 ]
Li, Xin [3 ]
Yang, Ruigang [2 ]
Wang, Cheng [1 ]
机构
[1] Xiamen Univ, Sch Informat, Xiamen, Peoples R China
[2] Inceptio Technol, Fremont, CA USA
[3] Texas A&M Univ, Sch Performance Visualizat & Fine Art, College Stn, TX USA
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
3D object detection received increasing attention in autonomous driving recently. Objects in 3D scenes are distributed with diverse orientations. Ordinary detectors do not explicitly model the variations of rotation and reflection transformations. Consequently, large networks and extensive data augmentation are required for robust detection. Recent equivariant networks explicitly model the transformation variations by applying shared networks on multiple transformed point clouds, showing great potential in object geometry modeling. However, it is difficult to apply such networks to 3D object detection in autonomous driving due to its large computation cost and slow reasoning speed. In this work, we present TED, an efficient Transformation-Equivariant 3D Detector to overcome the computation cost and speed issues. TED first applies a sparse convolution backbone to extract multi-channel transformation-equivariant voxel features; and then aligns and aggregates these equivariant features into lightweight and compact representations for high-performance 3D object detection. On the highly competitive KITTI 3D car detection leaderboard, TED ranked 1st among all submissions with competitive efficiency. Code is available at https://github.com/hailanyi/TED.
引用
收藏
页码:2795 / +
页数:9
相关论文
共 50 条
  • [21] Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving
    Chen, Yi-Nan
    Dai, Hang
    Ding, Yong
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 877 - 887
  • [22] Efficient 3D Object Detection Models and Evaluation Method for Autonomous Driving
    Lee, Jin-Hee
    Lee, Jae-Keun
    Lee, Joohyun
    Kim, Je-Seok
    Kwon, Soon
    2023 IEEE INTELLIGENT VEHICLES SYMPOSIUM, IV, 2023,
  • [23] R-CNN Based 3D Object Detection for Autonomous Driving
    Hu, Hongyu
    Zhao, Tongtong
    Wang, Qi
    Gao, Fei
    He, Lei
    CICTP 2020: TRANSPORTATION EVOLUTION IMPACTING FUTURE MOBILITY, 2020, : 918 - 929
  • [24] A semi-supervised 3D object detection method for autonomous driving
    Zhang, Jiacheng
    Liu, Huafeng
    Lu, Jianfeng
    DISPLAYS, 2022, 71
  • [25] Benchmarking Robustness of 3D Object Detection to Common Corruptions in Autonomous Driving
    Dong, Yinpeng
    Kang, Caixin
    Zhang, Jinlai
    Zhu, Zijian
    Wang, Yikai
    Yang, Xiao
    Su, Hang
    Wei, Xingxing
    Zhu, Jun
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 1022 - 1032
  • [26] Monocular 3D Object Detection for Autonomous Driving Based on Contextual Transformer
    She, Xiangyang
    Yan, Weijia
    Dong, Lihong
    Computer Engineering and Applications, 2024, 60 (19) : 178 - 189
  • [27] Testing Object Detection for Autonomous Driving Systems via 3D Reconstruction
    Shao, Jinyang
    2021 IEEE/ACM 43RD INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING: COMPANION PROCEEDINGS (ICSE-COMPANION 2021), 2021, : 117 - 119
  • [28] Monocular 3D object detection using dual quadric for autonomous driving
    Li, Peixuan
    Zhao, Huaici
    NEUROCOMPUTING, 2021, 441 : 151 - 160
  • [29] Multi-modality 3D object detection in autonomous driving: A review
    Tang, Yingjuan
    He, Hongwen
    Wang, Yong
    Mao, Zan
    Wang, Haoyu
    NEUROCOMPUTING, 2023, 553
  • [30] PLOT: a 3D point cloud object detection network for autonomous driving
    Zhang, Yihuan
    Wang, Liang
    Dai, Yifan
    ROBOTICA, 2023, 41 (05) : 1483 - 1499