Leveraging physics-informed neural computing for transport simulations of nuclear fusion plasmas

被引:7
作者
Seo, J. [1 ]
Kim, I. H. [1 ]
Nam, H. [1 ]
机构
[1] Chung Ang Univ, Dept Phys, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Nuclear fusion; Tokamak transport; Physics-informed neural network; TOKAMAK; EQUATION; ITER;
D O I
10.1016/j.net.2024.07.048
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
For decades, plasma transport simulations in tokamaks have used the finite difference method (FDM), a relatively simple scheme to solve the transport equations, a coupled set of time-dependent partial differential equations. In this FDM approach, typically over O(10(5)) time steps are needed for a single discharge, to mitigate numerical instabilities induced by stiff transport coefficients. It requires significant computing time as costly transport models are repeatedly called in a serial manner, proportional to the number of time steps. Additionally, the unidirectional calculations of FDM make it difficult to predict regions prior to the initial condition or apply additional temporal constraints. In this study, we discuss using a new scheme to solve plasma transport based on physics-informed neural networks (PINNs). PINN iteratively updates a function that maps spatiotemporal coordinates to plasma states, gradually reducing errors in transport equations. The required number of updates in PINNs is several orders of magnitude less than the chronological iterations in FDM. Furthermore, it is free from numerical instabilities arising from finite grids and enables more versatile semi-predictive simulations with arbitrary spatiotemporal constraints. In this paper, we discuss the features and potentials of the tokamak transport solver using PINNs through comparisons with FDM, and also its drawbacks and challenges.
引用
收藏
页码:5396 / 5404
页数:9
相关论文
共 41 条
[21]   Observation of a new type of self-generated current in magnetized plasmas [J].
Na, Yong-Su ;
Seo, Jaemin ;
Lee, Yoonji ;
Choi, Gyungjin ;
Park, Minseo ;
Park, Sangjin ;
Yi, Sumin ;
Wang, Weixing ;
Yoo, Min-Gu ;
Cha, Minsoo ;
Kim, Beomsu ;
Lee, Young-Ho ;
Han, Hyunsun ;
Kim, Boseong ;
Lee, Chanyoung ;
Kim, SangKyeun ;
Yang, SeongMoo ;
Byun, Cheol-Sik ;
Kim, Hyun-Seok ;
Ko, Jinseok ;
Lee, Woochang ;
Hahm, Taik Soo .
NATURE COMMUNICATIONS, 2022, 13 (01)
[22]   On benchmarking of simulations of particle transport in ITER [J].
Na, Yong-Su ;
Koechl, F. ;
Polevoi, A. R. ;
Byun, C. S. ;
Na, D. H. ;
Seo, J. ;
Felici, F. ;
Fukuyama, A. ;
Garcia, J. ;
Hayashi, N. ;
Kessel, C. E. ;
Luce, T. ;
Park, J. M. ;
Poli, F. ;
Sauter, O. ;
Sips, A. C. C. ;
Strand, P. ;
Teplukhina, A. ;
Voitsekhovitch, I ;
Wisitsorasak, A. ;
Yuan, X. .
NUCLEAR FUSION, 2019, 59 (07)
[23]   The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library [J].
Pankin, A ;
McCune, D ;
Andre, R ;
Bateman, G ;
Kritz, A .
COMPUTER PHYSICS COMMUNICATIONS, 2004, 159 (03) :157-184
[24]  
Park JM, 2017, COMPUT PHYS COMMUN, V214, P1, DOI 10.1016/j.cpc.2016.12.018
[25]   Stable numeric scheme for diffusion equation with a stiff transport [J].
Pereverzev, G. V. ;
Corrigan, G. .
COMPUTER PHYSICS COMMUNICATIONS, 2008, 179 (08) :579-585
[26]  
Pereverzev G.V, 2002, IPP Report 5/98
[27]   Meta-learning PINN loss functions [J].
Psaros, Apostolos F. ;
Kawaguchi, Kenji ;
Karniadakis, George Em .
JOURNAL OF COMPUTATIONAL PHYSICS, 2022, 458
[28]   Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations [J].
Raissi, M. ;
Perdikaris, P. ;
Karniadakis, G. E. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2019, 378 :686-707
[29]   Development and application of a predictive model for advanced tokamak scenario design [J].
Schramm, Raphael ;
Bock, Alexander ;
Fable, Emiliano ;
Stober, Joerg ;
Maraschek, Marc ;
Reisner, Maximilian ;
Fischer, Rainer ;
Zohm, Hartmut .
NUCLEAR FUSION, 2024, 64 (03)
[30]   Development of an operation trajectory design algorithm for control of multiple 0D parameters using deep reinforcement learning in KSTAR [J].
Seo, J. ;
Na, Y. -S. ;
Kim, B. ;
Lee, C. Y. ;
Park, M. S. ;
Park, S. J. ;
Lee, Y. H. .
NUCLEAR FUSION, 2022, 62 (08)