Leveraging physics-informed neural computing for transport simulations of nuclear fusion plasmas

被引:7
作者
Seo, J. [1 ]
Kim, I. H. [1 ]
Nam, H. [1 ]
机构
[1] Chung Ang Univ, Dept Phys, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Nuclear fusion; Tokamak transport; Physics-informed neural network; TOKAMAK; EQUATION; ITER;
D O I
10.1016/j.net.2024.07.048
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
For decades, plasma transport simulations in tokamaks have used the finite difference method (FDM), a relatively simple scheme to solve the transport equations, a coupled set of time-dependent partial differential equations. In this FDM approach, typically over O(10(5)) time steps are needed for a single discharge, to mitigate numerical instabilities induced by stiff transport coefficients. It requires significant computing time as costly transport models are repeatedly called in a serial manner, proportional to the number of time steps. Additionally, the unidirectional calculations of FDM make it difficult to predict regions prior to the initial condition or apply additional temporal constraints. In this study, we discuss using a new scheme to solve plasma transport based on physics-informed neural networks (PINNs). PINN iteratively updates a function that maps spatiotemporal coordinates to plasma states, gradually reducing errors in transport equations. The required number of updates in PINNs is several orders of magnitude less than the chronological iterations in FDM. Furthermore, it is free from numerical instabilities arising from finite grids and enables more versatile semi-predictive simulations with arbitrary spatiotemporal constraints. In this paper, we discuss the features and potentials of the tokamak transport solver using PINNs through comparisons with FDM, and also its drawbacks and challenges.
引用
收藏
页码:5396 / 5404
页数:9
相关论文
共 41 条
[1]  
Abadi M., 2015, TENSORFLOW LARGE SCA, V1
[2]   Core turbulent transport in tokamak plasmas: bridging theory and experiment with QuaLiKiz [J].
Bourdelle, C. ;
Citrin, J. ;
Baiocchi, B. ;
Casati, A. ;
Cottier, P. ;
Garbet, X. ;
Imbeaux, F. ;
Abhangi, M. ;
Abreu, P. ;
Aftanas, M. ;
Afzal, M. ;
Aggarwal, K. M. ;
Aho-Mantila, L. ;
Ahonen, E. ;
Aints, M. ;
Airila, M. ;
Albanese, R. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allan, P. ;
Almaviva, S. ;
Alonso, A. ;
Alper, B. ;
Alsworth, I. ;
Alves, D. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amosov, V. ;
Andersson, F. ;
Andersson Sunden, E. ;
Angelone, M. ;
Anghel, A. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Apruzzese, G. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arnoux, G. ;
Arshad, S. ;
Ash, A. ;
Asp, E. ;
Asunta, O. ;
Atanasiu, C. V. ;
Austin, Y. ;
Avotina, L. .
PLASMA PHYSICS AND CONTROLLED FUSION, 2016, 58 (01)
[3]  
Citrin J, 2024, Arxiv, DOI [arXiv:2406.06718, DOI 10.48550/ARXIV.2406.06718]
[4]   Magnetic control of tokamak plasmas through deep reinforcement learning [J].
Degrave, Jonas ;
Felici, Federico ;
Buchli, Jonas ;
Neunert, Michael ;
Tracey, Brendan ;
Carpanese, Francesco ;
Ewalds, Timo ;
Hafner, Roland ;
Abdolmaleki, Abbas ;
de las Casas, Diego ;
Donner, Craig ;
Fritz, Leslie ;
Galperti, Cristian ;
Huber, Andrea ;
Keeling, James ;
Tsimpoukelli, Maria ;
Kay, Jackie ;
Merle, Antoine ;
Moret, Jean-Marc ;
Noury, Seb ;
Pesamosca, Federico ;
Pfau, David ;
Sauter, Olivier ;
Sommariva, Cristian ;
Coda, Stefano ;
Duval, Basil ;
Fasoli, Ambrogio ;
Kohli, Pushmeet ;
Kavukcuoglu, Koray ;
Hassabis, Demis ;
Riedmiller, Martin .
NATURE, 2022, 602 (7897) :414-+
[5]   Validation of a new mixed Bohm/gyro-Bohm model for electron and ion heat transport against the ITER, Tore Supra and START database discharges [J].
Erba, M ;
Aniel, T ;
Basiuk, V ;
Becoulet, A ;
Litaudon, X .
NUCLEAR FUSION, 1998, 38 (07) :1013-1028
[6]   Real-time-capable prediction of temperature and density profiles in a tokamak using RAPTOR and a first-principle-based transport model [J].
Felici, F. ;
Citrin, J. ;
Teplukhina, A. A. ;
Redondo, J. ;
Bourdelle, C. ;
Imbeaux, F. ;
Sauter, O. ;
Abduallev, S. ;
Abhangi, M. ;
Abreu, P. ;
Afzal, M. ;
Aggarwal, K. M. ;
Ahlgren, T. ;
Ahn, J. H. ;
Aho-Mantila, L. ;
Aiba, N. ;
Airila, M. ;
Albanese, R. ;
Aldred, V. ;
Alegre, D. ;
Alessi, E. ;
Aleynikov, P. ;
Alfier, A. ;
Alkseev, A. ;
Allinson, M. ;
Alper, B. ;
Alves, E. ;
Ambrosino, G. ;
Ambrosino, R. ;
Amicucci, L. ;
Amosov, V. ;
Sunden, E. Andersson ;
Angelone, M. ;
Anghel, M. ;
Angioni, C. ;
Appel, L. ;
Appelbee, C. ;
Arena, P. ;
Ariola, M. ;
Arnichand, H. ;
Arshad, S. ;
Ash, A. ;
Ashikawa, N. ;
Aslanyan, V. ;
Asunta, O. ;
Auriemma, F. ;
Austin, Y. ;
Avotina, L. ;
Axton, M. D. ;
Ayres, C. .
NUCLEAR FUSION, 2018, 58 (09)
[7]   Orchestrating TRANSP Simulations for Interpretative and Predictive Tokamak Modeling with OMFIT [J].
Grierson, B. A. ;
Yuan, X. ;
Gorelenkova, M. ;
Kaye, S. ;
Logan, N. C. ;
Meneghini, O. ;
Haskey, S. R. ;
Buchanan, J. ;
Fitzgerald, M. ;
Smith, S. P. ;
Cui, L. ;
Budny, R. V. ;
Poli, F. M. .
FUSION SCIENCE AND TECHNOLOGY, 2018, 74 (1-2) :101-115
[8]   Mesoscopic Transport Events and the Breakdown of Fick's Law for Turbulent Fluxes [J].
Hahm, T. S. ;
Diamond, P. H. .
JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 73 (06) :747-792
[9]   On 1D diffusion problems with a gradient-dependent diffusion coefficient [J].
Jardin, S. C. ;
Bateman, G. ;
Hammett, G. W. ;
Ku, L. P. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (20) :8769-8775
[10]   Finite volume method network for the acceleration of unsteady computational fluid dynamics: Non-reacting and reacting flows [J].
Jeon, Joongoo ;
Lee, Juhyeong ;
Kim, Sung Joong .
INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2022, 46 (08) :10770-10795