Research on electrolyte structure and interface design for solid state Lithium-Sulfur batteries: Challenges, strategies and prospects

被引:4
作者
Han, Shichang [1 ]
Hu, Ben [1 ]
Zheng, Zhangyu [2 ]
Huang, Kangsheng [3 ]
Fan, Zengjie [4 ]
Luo, Derong [4 ]
Xu, Tiezhu [4 ]
Zhu, Tianyu [1 ]
Xu, Jie [2 ]
机构
[1] Wanjiang Univ Technol, Coll Mech Engn, Maanshan 243031, Peoples R China
[2] Anhui Univ Technol, Sch Mat Sci & Engn, Maanshan 243002, Peoples R China
[3] Henan Polytech Univ, Sch Mat Sci & Engn, Jiaozuo 454003, Peoples R China
[4] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Jiangsu Key Lab Electrochem Energy Storage Technol, Nanjing 210016, Peoples R China
关键词
Solid-state lithium-sulfur batteries; Composite solid electrolyte; Inorganic solid electrolytes; Polymer solid electrolytes; Electrode/electrolyte interfaces; COMPOSITE POLYMER ELECTROLYTES; ION-CONDUCTING MEMBRANE; LI METAL BATTERIES; ENERGY DENSITY; SUPERIONIC CONDUCTOR; DENDRITE FORMATION; GRAPHENE OXIDE; PERFORMANCE; CATHODE; FILLER;
D O I
10.1016/j.jpowsour.2025.236575
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Solid-state lithium-sulfur batteries (SSLSBs) incorporating solid-state electrolytes (SSEs) represent a promising solution to the energy density constraints and safety concerns associated with conventional lithium metal batteries. However, the practical implementation of single-phase SSEs remains limited by suboptimal performance metrics. Composite solid electrolytes (CSEs), which synergistically combine the advantages of inorganic solid electrolytes (ISEs) and solid polymer electrolytes (SPEs), have emerged as a viable alternative, offering superior ionic conductivity, lower interfacial resistance, and enhanced electrode stability in SSLSBs. This review systematically explores the development of solid electrolytes, analyzing the strengths and weaknesses of ISEs, SPEs, and various CSEs. Key strategies to address persistent challenges, including low ionic conductivity, limited electrochemical stability, and high interfacial resistance, are also examined. Particular attention is paid to the impact of electrolyte-electrode interface modifications, specifically at the cathode-electrolyte and anode- electrolyte interfaces, on the overall battery performance. Finally, the review highlights critical challenges and outlines future directions for the practical adoption of composite electrolytes in next-generation energy storage systems.
引用
收藏
页数:20
相关论文
共 186 条
[1]   A high-performance BaTiO3-grafted-GO-laden poly(ethylene oxide)-based membrane as an electrolyte for all-solid lithium-batteries [J].
Angulakshmi, N. ;
Kar, Goutam Prasanna ;
Bose, Suryasarathi ;
Gowd, E. Bhoje ;
Thomas, Sabu ;
Stephan, A. Manuel .
MATERIALS CHEMISTRY FRONTIERS, 2017, 1 (02) :269-277
[2]   Effects of TiO2 and ZrO2 nanofillers in LiBOB based PVdF/PVC composite polymer electrolytes (CPE) [J].
Aravindan, V. ;
Vickraman, P. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2007, 40 (21) :6754-6759
[3]   Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction [J].
Bachman, John Christopher ;
Muy, Sokseiha ;
Grimaud, Alexis ;
Chang, Hao-Hsun ;
Pour, Nir ;
Lux, Simon F. ;
Paschos, Odysseas ;
Maglia, Filippo ;
Lupart, Saskia ;
Lamp, Peter ;
Giordano, Livia ;
Shao-Horn, Yang .
CHEMICAL REVIEWS, 2016, 116 (01) :140-162
[4]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[5]   Insight into the Isoreticularity of Li-MOFs for the Design of Low-Density Solid and Quasi-Solid Electrolytes [J].
Butreddy, Pravalika ;
Wijesingha, Manoj ;
Laws, Selina ;
Pathiraja, Gayani ;
Mo, Yirong ;
Rathnayake, Hemali .
CHEMISTRY OF MATERIALS, 2023, 35 (23) :9857-9878
[6]   Elucidating Interfacial Phenomena between Solid-State Electrolytes and the Sulfur-Cathode of Lithium-Sulfur Batteries [J].
Camacho-Forero, Luis E. ;
Balbuena, Perla B. .
CHEMISTRY OF MATERIALS, 2020, 32 (01) :360-373
[7]   Covalent Organic Framework for Rechargeable Batteries: Mechanisms and Properties of Ionic Conduction [J].
Cao, Yu ;
Wang, Meidi ;
Wang, Hongjian ;
Han, Chengyu ;
Pan, Fusheng ;
Sun, Jie .
ADVANCED ENERGY MATERIALS, 2022, 12 (20)
[8]   Evolving contact mechanics and microstructure formation dynamics of the lithium metal-Li7La3Zr2O12 interface [J].
Chang, Wesley ;
May, Richard ;
Wang, Michael ;
Thorsteinsson, Gunnar ;
Sakamoto, Jeff ;
Marbella, Lauren ;
Steingart, Daniel .
NATURE COMMUNICATIONS, 2021, 12 (01)
[9]   PEO/garnet composite electrolytes for solid-state lithium batteries: From "ceramic-in-polymer" to "polymer-in-ceramic" [J].
Chen, Long ;
Li, Yutao ;
Li, Shuai-Peng ;
Fan, Li-Zhen ;
Nan, Ce-Wen ;
Goodenough, John B. .
NANO ENERGY, 2018, 46 :176-184
[10]   Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries [J].
Chen, Mengyuan ;
Ma, Xiaotu ;
Chen, Bin ;
Arsenault, Renata ;
Karlson, Peter ;
Simon, Nakia ;
Wang, Yan .
JOULE, 2019, 3 (11) :2622-2646