Grobner Degenerations of Determinantal Ideals with an Application to Toric Degenerations of Grassmannians

被引:1
作者
Mohammadi, Fatemeh [1 ]
机构
[1] Katholieke Univ Leuven, Dept Math & Comp Sci, Leuven, Belgium
来源
MATHEMATICAL SOFTWARE-ICMS 2024 | 2024年 / 14749卷
基金
比利时弗兰德研究基金会;
关键词
Grobner degeneration; Determinantal ideals; Grassmannians; Betti numbers; Cellular resolution; CELLULAR RESOLUTIONS; SYZYGIES; DIVISORS; GRAPHS;
D O I
10.1007/978-3-031-64529-7_30
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The concept of the Grobner fan for a polynomial ideal, introduced by Mora and Robbiano in 1988, provides a robust polyhedral framework where maximal cones correspond to the reduced Grobner bases of the ideal. Within this geometric structure resides the tropical variety, a subcomplex of the Grobner fan, utilized across various mathematical domains. Despite its significance, the computational complexity associated with tropical varieties often limits practical computations to smaller instances. In this note, we revisit a family of monomial ideals, called matching field ideals, from the context of Grobner degenerations. We show that they can be obtained as weighted initial ideals of determinantal ideals. We explore the algebraic properties of these ideals, with a particular emphasis on minimal free resolutions and Betti numbers.
引用
收藏
页码:285 / 295
页数:11
相关论文
共 31 条
[1]   Okounkov bodies and toric degenerations [J].
Anderson, Dave .
MATHEMATISCHE ANNALEN, 2013, 356 (03) :1183-1202
[2]   The Bergman complex of a matroid and phylogenetic trees [J].
Ardila, F ;
Klivans, CJ .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2006, 96 (01) :38-49
[3]  
Bayer D, 1998, J REINE ANGEW MATH, V502, P123
[4]   COMBINATORICS OF MAXIMAL MINORS [J].
BERNSTEIN, D ;
ZELEVINSKY, A .
JOURNAL OF ALGEBRAIC COMBINATORICS, 1993, 2 (02) :111-121
[5]  
Bossinger L., 2017, COMBINATORIAL ALGEBR, P247
[6]   Families of Grobner Degenerations, Grassmannians and Universal Cluster Algebras [J].
Bossinger, Lara ;
Mohammadi, Fatemeh ;
Najera Chavez, Alfredo .
SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2021, 17
[7]  
Clarke O., 2021, Collect. Math., V12, P1
[8]  
Clarke O, 2024, Arxiv, DOI arXiv:2404.10729
[9]   Combinatorial mutations of Gelfand-Tsetlin polytopes, Feigin-Fourier-Littelmann-Vinb erg polytopes, and block diagonal matching field polytopes [J].
Clarke, Oliver ;
Higashitani, Akihiro ;
Mohammadi, Fatemeh .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2024, 228 (07)
[10]   Toric degenerations of partial flag varieties and combinatorial mutations of matching field polytopes [J].
Clarke, Oliver ;
Mohammadi, Fatemeh ;
Zaffalon, Francesca .
JOURNAL OF ALGEBRA, 2024, 638 :90-128