QoS Optimization via Computation Offloading in Metaverse Environment

被引:0
作者
Ge, Zhiyuan [1 ,2 ]
Zhang, Pengcheng [1 ,2 ]
Jin, Huiying [3 ]
Dong, Hai [4 ]
Ji, Shunhui [1 ,2 ]
Li, Jiajia [1 ,2 ]
Wang, Qi [1 ,2 ]
机构
[1] Hohai Univ, Key Lab Water Big Data Technol Minist Water Reso, Nanjing, Peoples R China
[2] Hohai Univ, Coll Comp Sci & Software Engn, Nanjing, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing, Peoples R China
[4] RMIT Univ, Sch Comp Technol, Melbourne, Australia
来源
2024 IEEE INTERNATIONAL CONFERENCE ON WEB SERVICES, ICWS 2024 | 2024年
基金
澳大利亚研究理事会; 中国国家自然科学基金;
关键词
Metaverse; Computation offloading; Edge computing; Reinforcement learning; Quality of Service; DELAY OPTIMIZATION; SERVICE;
D O I
10.1109/ICWS62655.2024.00125
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The emergence of the metaverse signifies a paradigm shift in Internet technology, offering a comprehensive virtual social platform spanning various domains such as social interaction, gaming, healthcare, and tourism. This new era of the metaverse is facilitated by advancements in next-generation digital technologies including edge computing, artificial intelligence, virtual reality, augmented reality, and blockchain. In the metaverse, the quantity and variety of services requested by users may surpass those in other environments, and existing work cannot be applied to metaverse QoS (Quality of Service) optimization. To address this problem, this paper proposes Meta-PPO, an optimization method for enhancing the QoS of metaverse services using reinforcement learning. Firstly, metaverse services are categorized into virtual scene services and meta-services, providing a comprehensive framework for analysis. Secondly, Meta-PPO, based on the proximal policy optimization algorithm, is introduced to optimize the QoS of metaverse services. This method effectively balances the objectives of minimizing average delay and maximizing resource utilization of mobile devices by making informed offloading decisions for the identified service categories. Simulation results demonstrate the superiority of the proposed method over existing techniques, showcasing its suitability and effectiveness for enhancing the QoS of metaverse service.
引用
收藏
页码:1067 / 1077
页数:11
相关论文
共 35 条
[1]   Edge-Enabled Metaverse: The Convergence of Metaverse and Mobile Edge Computing [J].
Aung, Nyothiri ;
Dhelim, Sahraoui ;
Chen, Liming ;
Ning, Huansheng ;
Atzori, Luigi ;
Kechadi, Tahar .
TSINGHUA SCIENCE AND TECHNOLOGY, 2024, 29 (03) :795-805
[2]   Efficient Multi-User Computation Offloading for Mobile-Edge Cloud Computing [J].
Chen, Xu ;
Jiao, Lei ;
Li, Wenzhong ;
Fu, Xiaoming .
IEEE-ACM TRANSACTIONS ON NETWORKING, 2016, 24 (05) :2827-2840
[3]   Dynamic Resource Allocation for Metaverse Applications with Deep Reinforcement Learning [J].
Chu, Nam H. ;
Nguyen, Diep N. ;
Hoang, Dinh Thai ;
Phan, Khoa T. ;
Dutkiewicz, Eryk ;
Niyato, Dusit ;
Shu, Tao .
2023 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE, WCNC, 2023,
[4]  
Computing A., Reinforcement learning in autonomic computing
[5]   Edge Intelligence-Based Ultra-Reliable and Low-Latency Communications for Digital Twin-Enabled Metaverse [J].
Dang Van Huynh ;
Khosravirad, Saeed R. ;
Masaracchia, Antonino ;
Dobre, Octavia A. ;
Duong, Trung Q. .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (08) :1733-1737
[6]  
Dong Chengzu, 2023, 2023 IEEE International Conference on Metaverse Computing, Networking and Applications (MetaCom), P658, DOI 10.1109/MetaCom57706.2023.00116
[7]   From Digital Twin to Metaverse: The Role of 6G Ultra-Reliable and Low-Latency Communications with Multi-Tier Computing [J].
Duong, Trung Q. ;
Van Huynh, Dang ;
Khosravirad, Saeed R. ;
Sharma, Vishal ;
Dobre, Octavia A. ;
Shin, Hyundong .
IEEE WIRELESS COMMUNICATIONS, 2023, 30 (03) :140-146
[8]   Quality of Service Impact on Edge Physics Simulations for VR [J].
Friston, Sebastian ;
Griffith, Elias ;
Swapp, David ;
Lrondi, Caleb ;
Jjunju, Fred ;
Ward, Ryan ;
Marshall, Alan ;
Steed, Anthony .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (05) :2691-2701
[9]   Multi-Objective Optimization of URLLC-Based Metaverse Services [J].
Gao, Xinyu ;
Yi, Wenqiang ;
Liu, Yuanwei ;
Hanzo, Lajos .
IEEE TRANSACTIONS ON COMMUNICATIONS, 2023, 71 (11) :6745-6761
[10]  
Ge Y., 2012, P ACM IEEE INT S LOW, P279