Hyperspectral Image Super-Resolution via Self-projected Smooth Prior

被引:0
|
作者
Bu, Yuanyang [1 ,2 ]
Zhao, Yongqiang [1 ,2 ]
Chan, Jonathan Cheung-Wai [3 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian, Peoples R China
[2] Northwestern Polytech Univ, Inst Res & Dev, Shenzhen, Peoples R China
[3] Vrije Univ Brussel, Dept Elect & Informat, B-1050 Brussels, Belgium
来源
PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2020 | 2020年 / 12305卷
基金
中国国家自然科学基金;
关键词
Hyperspectral image; Super-resolution; Non-local Self-similarity; Spectral correlation;
D O I
10.1007/978-3-030-60633-6_54
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High spectral correlations and non-local self-similarities, as two intrinsic characteristics underlying hyperspectral image (HSI), have been widely used in HSI super-resolution. However, existing methods mostly utilize the two intrinsic characteristics separately, which still inadequately exploit spatial and spectral information. To address this issue, in this study, a novel self-projected smooth prior (SPSP) is proposed for the task of HSI super-resolution. SPSP describes that two full-band patches (FBPs) are close to each other and then the corresponding subspace coefficients are also close to each other, namely smooth dependences of clustered FBPs within each group of HSI. Suppose that each group of FBPs extracted from HSI lies in smooth subspace, all FBPs within each group can be regarded as the nodes on an undirected graph, then the underlying smooth subspace structures within each group of HSI are implicitly depicted by capturing the linearly pair-wise correlation between those nodes. Utilizing each group of clustered FBPs as projection basis matrix can adaptively and effectively learn the smooth subspace structures. Besides, different from existing methods exploiting non-local self-similarities with multispectral image, to our knowledge, this work represents the first effort to exploit the non-local self-similarities on its spectral intrinsic dimension of desired HSI. In this way, spectral correlations and non-local self-similarities of HSI are incorporated into a unified paradigm to exploit spectral and spatial information simultaneously. As thus, the well learned SPSP is incorporated into the objective function solved by the alternating direction method of multipliers (ADMM). Experimental results on synthetic and real hyperspectral data demonstrate the superiority of the proposed method.
引用
收藏
页码:648 / 659
页数:12
相关论文
共 50 条
  • [41] Super-resolution of hyperspectral images using sparse representation and Gabor prior
    Patel, Rakesh C.
    Joshi, Manjunath V.
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10
  • [42] Implicit Neural Representation Learning for Hyperspectral Image Super-Resolution
    Zhang, Kaiwei
    Zhu, Dandan
    Min, Xiongkuo
    Zhai, Guangtao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [43] DiffHSR: Unleashing Diffusion Priors in Hyperspectral Image Super-Resolution
    Jia, Yizhen
    Xie, Yumeng
    An, Ping
    Tian, Zhen
    Hua, Xia
    IEEE SIGNAL PROCESSING LETTERS, 2025, 32 : 236 - 240
  • [44] Separable-spectral convolution and inception network for hyperspectral image super-resolution
    Zheng, Ke
    Gao, Lianru
    Ran, Qiong
    Cui, Ximin
    Zhang, Bing
    Liao, Wenzhi
    Jia, Sen
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2019, 10 (10) : 2593 - 2607
  • [45] Spatial-Spectral Deep Residual Network for Hyperspectral Image Super-Resolution
    Zheng W.F.
    Xie Z.X.
    SN Computer Science, 4 (4)
  • [46] Bayesian Hyperspectral Image Super-Resolution in the Presence of Spectral Variability
    Ye, Fei
    Wu, Zebin
    Xu, Yang
    Liu, Hongyi
    Wei, Zhihui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [47] Adaptive Nonnegative Sparse Representation for Hyperspectral Image Super-Resolution
    Li, Xuesong
    Zhang, Youqiang
    Ge, Zixian
    Cao, Guo
    Shi, Hao
    Fu, Peng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 4267 - 4283
  • [48] Transferable Multiple Subspace Learning for Hyperspectral Image Super-Resolution
    Bu, Yuanyang
    Zhao, Yongqiang
    Xue, Jize
    Yao, Jiaxin
    Chan, Jonathan Cheung-Wai
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [49] Interactformer: Interactive Transformer and CNN for Hyperspectral Image Super-Resolution
    Liu, Yaoting
    Hu, Jianwen
    Kang, Xudong
    Luo, Jing
    Fan, Shaosheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [50] Hyperspectral image super-resolution: a hybrid color mapping approach
    Zhou, Jin
    Kwan, Chiman
    Budavari, Bence
    JOURNAL OF APPLIED REMOTE SENSING, 2016, 10