Hyperspectral Image Super-Resolution via Self-projected Smooth Prior

被引:0
|
作者
Bu, Yuanyang [1 ,2 ]
Zhao, Yongqiang [1 ,2 ]
Chan, Jonathan Cheung-Wai [3 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian, Peoples R China
[2] Northwestern Polytech Univ, Inst Res & Dev, Shenzhen, Peoples R China
[3] Vrije Univ Brussel, Dept Elect & Informat, B-1050 Brussels, Belgium
来源
PATTERN RECOGNITION AND COMPUTER VISION, PT I, PRCV 2020 | 2020年 / 12305卷
基金
中国国家自然科学基金;
关键词
Hyperspectral image; Super-resolution; Non-local Self-similarity; Spectral correlation;
D O I
10.1007/978-3-030-60633-6_54
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
High spectral correlations and non-local self-similarities, as two intrinsic characteristics underlying hyperspectral image (HSI), have been widely used in HSI super-resolution. However, existing methods mostly utilize the two intrinsic characteristics separately, which still inadequately exploit spatial and spectral information. To address this issue, in this study, a novel self-projected smooth prior (SPSP) is proposed for the task of HSI super-resolution. SPSP describes that two full-band patches (FBPs) are close to each other and then the corresponding subspace coefficients are also close to each other, namely smooth dependences of clustered FBPs within each group of HSI. Suppose that each group of FBPs extracted from HSI lies in smooth subspace, all FBPs within each group can be regarded as the nodes on an undirected graph, then the underlying smooth subspace structures within each group of HSI are implicitly depicted by capturing the linearly pair-wise correlation between those nodes. Utilizing each group of clustered FBPs as projection basis matrix can adaptively and effectively learn the smooth subspace structures. Besides, different from existing methods exploiting non-local self-similarities with multispectral image, to our knowledge, this work represents the first effort to exploit the non-local self-similarities on its spectral intrinsic dimension of desired HSI. In this way, spectral correlations and non-local self-similarities of HSI are incorporated into a unified paradigm to exploit spectral and spatial information simultaneously. As thus, the well learned SPSP is incorporated into the objective function solved by the alternating direction method of multipliers (ADMM). Experimental results on synthetic and real hyperspectral data demonstrate the superiority of the proposed method.
引用
收藏
页码:648 / 659
页数:12
相关论文
共 50 条
  • [21] Hyperspectral image super-resolution based on attention ConvBiLSTM network
    Lu, Xiaochen
    Liu, Xiaohui
    Zhang, Lei
    Jia, Fengde
    Yang, Yunlong
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (13) : 5059 - 5074
  • [22] Hyperspectral image super-resolution reconstruction based on image partition and detail enhancement
    Xu, Yinghao
    Lv, Yuchao
    Zhu, Xijun
    Liu, Sifan
    Sun, Yuanyuan
    Wang, Yimin
    SOFT COMPUTING, 2023, 27 (18) : 13461 - 13476
  • [23] Hyperspectral image super-resolution via double-flow pretreatment network
    Li, Ning
    Ma, Rubin
    Jiao, Jichao
    Qi, Wangjing
    Li, Yuxuan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (09) : 28027 - 28038
  • [24] Hyperspectral image super-resolution via double-flow pretreatment network
    Ning Li
    Rubin Ma
    Jichao Jiao
    Wangjing Qi
    Yuxuan Li
    Multimedia Tools and Applications, 2024, 83 : 28027 - 28038
  • [25] Hyperspectral image super-resolution reconstruction based on image partition and detail enhancement
    Yinghao Xu
    Yuchao Lv
    Xijun Zhu
    Sifan Liu
    Yuanyuan Sun
    Yimin Wang
    Soft Computing, 2023, 27 : 13461 - 13476
  • [26] Synthetic Data Pretraining for Hyperspectral Image Super-Resolution
    Aiello, Emanuele
    Agarla, Mirko
    Valsesia, Diego
    Napoletano, Paolo
    Bianchi, Tiziano
    Magli, Enrico
    Schettini, Raimondo
    IEEE ACCESS, 2024, 12 : 65024 - 65031
  • [27] Deep Recursive Network for Hyperspectral Image Super-Resolution
    Wei, Wei
    Nie, Jiangtao
    Li, Yong
    Zhang, Lei
    Zhang, Yanning
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 (06) : 1233 - 1244
  • [28] Noise Prior Knowledge Informed Bayesian Inference Network for Hyperspectral Super-Resolution
    Dong, Wenqian
    Qu, Jiahui
    Xiao, Song
    Zhang, Tongzhen
    Li, Yunsong
    Jia, Xiuping
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 3121 - 3135
  • [29] Nonlocal Patch Tensor Sparse Representation for Hyperspectral Image Super-Resolution
    Xu, Yang
    Wu, Zebin
    Chanussot, Jocelyn
    Wei, Zhihui
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (06) : 3034 - 3047
  • [30] Rethinking 3D-CNN in Hyperspectral Image Super-Resolution
    Liu, Ziqian
    Wang, Wenbing
    Ma, Qing
    Liu, Xianming
    Jiang, Junjun
    REMOTE SENSING, 2023, 15 (10)