Molecular breast imaging. Positron emission tomography/magnetic resonance imaging and targeted tracers

被引:0
|
作者
Panagiotis, Kapetas [1 ,2 ,3 ]
Gullo, Roberto Lo [3 ]
Resch, Daphne [1 ]
Pinker, Katja [3 ]
机构
[1] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Div Mol & Struct Preclin Imaging, Vienna, Austria
[2] Mem Sloan Kettering Canc Ctr, Dept Radiol, Breast Imaging Serv, New York, NY USA
[3] Columbia Univ, Vagelos Coll Phys & Surg, Dept Radiol, Div Breast Imaging, 622 West 168th St, New York, NY 10032 USA
来源
RADIOLOGIE | 2025年
关键词
Brustkrebs; Mammadiagnostik; Radiotracer; Hybridbildgebung; Biomarker; Breast cancer; Breast diagnostics; Radiotracers; Hybrid imaging; Biomarkers; FDG-PET; CANCER; MAMMOGRAPHY; SCINTIMAMMOGRAPHY; F-18-FDG;
D O I
10.1007/s00117-024-01403-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Molecular imaging has been introduced into breast imaging in recent years, in order to improve breast cancer (BC) depiction as well as our understanding of cancer-associated processes at a cellular and molecular level. Objectives: This review offers an overview of the various molecular imaging modalities implemented in breast imaging as well as of the most significant novel radiotracers and their potential role for the functional evaluation of BC. Materials and methods: The applications and the diagnostic potential of different imaging modalities (scintimammography [SM], breast-specific gamma imaging [BSGI], positron emission tomography [PET] mammography [PEM] and PET/MRI) as well as specific tracers (18-fluormisonidazole [F-18-MISO], 18-fluoro-L-thymidine [(FLT)-F-18], (18)fluoroestradiol [(FES)-F-18], 89-zirconium-trastuzumab, 18-Fluoroethylcholine [(FEC)-F-18] and 68-gallium-fibroblast activation protein inhibitor [68Ga-FAPI]) will be discussed. Results: BSGI increases the sensitivity of SM for small (<1 cm) lesions, while PEM is more sensitive than whole-body PET scans. Hybrid PET/MRI is the most promising imaging modality for the assessment of BC. While F-18-FDG illustrates the glucose metabolism of cancer cells, novel tracers have other, tumor-specific targets: F-18-MISO assesses tumor hypoxia,(FLT)-F-18 the metabolism of DNA, 18FES and 89Zr-trastuzumab the tumor receptor status,18FEC the metabolism of choline and 68Ga-FAPI cancer-associated fibroblasts. Conclusion: It can be expected that molecular imaging will gain importance for breast imaging in the future, enabling an improved diagnosis, staging, and treatment followup.
引用
收藏
页码:170 / 177
页数:8
相关论文
共 50 条
  • [21] Radiotracers for positron emission tomography imaging
    Gillings, Nic
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2013, 26 (01): : 149 - 158
  • [22] Molecular imaging of targeted therapies with positron emission tomography: the visualization of personalized cancer care
    Mammatas, Lemonitsa H.
    Verheul, Henk M. W.
    Hendrikse, N. Harry
    Yaqub, Maqsood
    Lammertsma, Adriaan A.
    van Oordt, C. Willemien Menke-van der Houven
    CELLULAR ONCOLOGY, 2015, 38 (01) : 49 - 64
  • [23] Molecular Targeted Positron Emission Tomography Imaging and Radionuclide Therapy of Pancreatic Ductal Adenocarcinoma
    Poels, Thomas T.
    Vuijk, Floris A.
    de Geus-Oei, Lioe-Fee
    Vahrmeijer, Alexander L.
    Oprea-Lager, Daniela E.
    Swijnenburg, Rutger-Jan
    CANCERS, 2021, 13 (24)
  • [24] Magnetic Resonance Imaging of the Breast
    Holbrook, Anna I.
    Newell, Mary S.
    CLINICAL OBSTETRICS AND GYNECOLOGY, 2016, 59 (02) : 394 - 402
  • [25] Positron Emission Tomography/Magnetic Resonance Imaging of Glioblastoma Using a Functionalized Gadofullerene Nanoparticle
    Chen, Daiqin
    Zhou, Yue
    Yang, Dongzhi
    Guan, Mirong
    Zhen, Mingming
    Lu, Weifei
    Van Dort, Marcian E.
    Ross, Brian D.
    Wang, Chunru
    Shu, Chunying
    Hong, Hao
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (24) : 21343 - 21352
  • [26] A Baboon Brain Atlas for Magnetic Resonance Imaging and Positron Emission Tomography Image Analysis
    Agaronyan, Artur
    Syed, Raeyan
    Kim, Ryan
    Hsu, Chao-Hsiung
    Love, Scott A.
    Hooker, Jacob M.
    Reid, Alicia E.
    Wang, Paul C.
    Ishibashi, Nobuyuki
    Kang, Yeona
    Tu, Tsang-Wei
    FRONTIERS IN NEUROANATOMY, 2022, 15
  • [27] Multiparametric positron emission tomography/magnetic resonance imaging in nasopharyngeal carcinoma: Correlations between magnetic resonance imaging functional parameters and18F-fluorodeoxyglucose positron emission tomography imaging biomarkers and their predictive value for treatment failure
    Chan, Sheng-Chieh
    Ng, Shu-Hang
    Yeh, Chih-Hua
    Chang, Kai-Ping
    TZU CHI MEDICAL JOURNAL, 2021, 33 (01): : 61 - +
  • [28] Emergence of Integrated Cardiac Magnetic Resonance/Positron Emission Tomography Imaging as the Preferred Imaging Modality in Cardiac Sarcoidosis
    Schindler, Thomas H.
    JACC-CARDIOVASCULAR IMAGING, 2018, 11 (01) : 108 - 110
  • [29] Combined positron emission tomography and magnetic resonance imaging (PET/MRI) in children and adolescents
    Schaefer, J. F.
    Tsiflikas, I.
    Esser, M.
    Dittmann, H.
    Bender, B.
    Gatidis, S.
    MONATSSCHRIFT KINDERHEILKUNDE, 2020, 168 (05) : 416 - 426
  • [30] Advancements in Positron Emission Tomography/Magnetic Resonance Imaging and Applications to Diagnostic Challenges in Neuroradiology
    Kure, Andrew J.
    Savas, Hatice
    Hijaz, Tarek A.
    Hussaini, Syed F.
    Korutz, Alexander W.
    SEMINARS IN ULTRASOUND CT AND MRI, 2021, 42 (05) : 434 - 451