Molecular breast imaging. Positron emission tomography/magnetic resonance imaging and targeted tracers

被引:0
|
作者
Panagiotis, Kapetas [1 ,2 ,3 ]
Gullo, Roberto Lo [3 ]
Resch, Daphne [1 ]
Pinker, Katja [3 ]
机构
[1] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Div Mol & Struct Preclin Imaging, Vienna, Austria
[2] Mem Sloan Kettering Canc Ctr, Dept Radiol, Breast Imaging Serv, New York, NY USA
[3] Columbia Univ, Vagelos Coll Phys & Surg, Dept Radiol, Div Breast Imaging, 622 West 168th St, New York, NY 10032 USA
来源
RADIOLOGIE | 2025年
关键词
Brustkrebs; Mammadiagnostik; Radiotracer; Hybridbildgebung; Biomarker; Breast cancer; Breast diagnostics; Radiotracers; Hybrid imaging; Biomarkers; FDG-PET; CANCER; MAMMOGRAPHY; SCINTIMAMMOGRAPHY; F-18-FDG;
D O I
10.1007/s00117-024-01403-z
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Molecular imaging has been introduced into breast imaging in recent years, in order to improve breast cancer (BC) depiction as well as our understanding of cancer-associated processes at a cellular and molecular level. Objectives: This review offers an overview of the various molecular imaging modalities implemented in breast imaging as well as of the most significant novel radiotracers and their potential role for the functional evaluation of BC. Materials and methods: The applications and the diagnostic potential of different imaging modalities (scintimammography [SM], breast-specific gamma imaging [BSGI], positron emission tomography [PET] mammography [PEM] and PET/MRI) as well as specific tracers (18-fluormisonidazole [F-18-MISO], 18-fluoro-L-thymidine [(FLT)-F-18], (18)fluoroestradiol [(FES)-F-18], 89-zirconium-trastuzumab, 18-Fluoroethylcholine [(FEC)-F-18] and 68-gallium-fibroblast activation protein inhibitor [68Ga-FAPI]) will be discussed. Results: BSGI increases the sensitivity of SM for small (<1 cm) lesions, while PEM is more sensitive than whole-body PET scans. Hybrid PET/MRI is the most promising imaging modality for the assessment of BC. While F-18-FDG illustrates the glucose metabolism of cancer cells, novel tracers have other, tumor-specific targets: F-18-MISO assesses tumor hypoxia,(FLT)-F-18 the metabolism of DNA, 18FES and 89Zr-trastuzumab the tumor receptor status,18FEC the metabolism of choline and 68Ga-FAPI cancer-associated fibroblasts. Conclusion: It can be expected that molecular imaging will gain importance for breast imaging in the future, enabling an improved diagnosis, staging, and treatment followup.
引用
收藏
页码:170 / 177
页数:8
相关论文
共 50 条
  • [1] Molekulare BrustbildgebungPositronen-Emissions-Tomographie/Magnetresonanztomographie und zielgerichtete TracerMolecular breast imagingPositron emission tomography/magnetic resonance imaging and targeted tracers
    Kapetas Panagiotis
    Roberto Lo Gullo
    Daphne Resch
    Katja Pinker
    Die Radiologie, 2025, 65 (3) : 170 - 177
  • [2] Positron Emission Tomography/Magnetic Resonance Imaging of the Breast
    Sher, Andrew
    Vercher-Conejero, Jose L.
    Muzic, Raymond F., Jr.
    Avril, Norbert
    Plecha, Donna
    SEMINARS IN ROENTGENOLOGY, 2014, 49 (04) : 304 - 312
  • [3] Positron Emission Tomography/Magnetic Resonance Imaging for Local Tumor Staging in Patients With Primary Breast Cancer A Comparison With Positron Emission Tomography/Computed Tomography and Magnetic Resonance Imaging
    Grueneisen, Johannes
    Nagarajah, James
    Buchbender, Christian
    Hoffmann, Oliver
    Schaarschmidt, Benedikt Michael
    Poeppel, Thorsten
    Forsting, Michael
    Quick, Harald H.
    Umutlu, Lale
    Kinner, Sonja
    INVESTIGATIVE RADIOLOGY, 2015, 50 (08) : 505 - 513
  • [4] Functional Imaging of Colorectal Cancer: Positron Emission Tomography, Magnetic Resonance Imaging, and Computed Tomography
    Kapse, Nikhil
    Goh, Vicky
    CLINICAL COLORECTAL CANCER, 2009, 8 (02) : 77 - 87
  • [5] Update on Positron Emission Tomography/ Magnetic Resonance Imaging Cancer and Inflammation Imaging in the Clinic
    Sabeghi, Paniz
    Katal, Sanaz
    Chen, Michelle
    Taravat, Farzaneh
    Werner, Thomas J.
    Saboury, Babak
    Gholamrezanezhad, Ali
    Alavi, Abass
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2023, 31 (04) : 517 - 538
  • [6] Clinical Positron Emission Tomography/Magnetic Resonance Imaging Applications
    von Schulthess, Gustav K.
    Kuhn, Felix Pierre
    Kaufmann, Philipp
    Veit-Haibach, Patrick
    SEMINARS IN NUCLEAR MEDICINE, 2013, 43 (01) : 3 - 10
  • [7] An X-ray Computed Tomography/Positron Emission Tomography System Designed Specifically for Breast Imaging
    Boone, John M.
    Yang, Kai
    Burkett, George W.
    Packard, Nathan J.
    Huang, Shih-ying
    Bowen, Spencer
    Badawi, Ramsey D.
    Lindfors, Karen K.
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2010, 9 (01) : 29 - 43
  • [8] Positron emission tomography molecular imaging-based cancer phenotyping
    Jin, Chentao
    Luo, Xiaoyun
    Li, Xiaoyi
    Zhou, Rui
    Zhong, Yan
    Xu, Zhoujiao
    Cui, Chunyi
    Xing, Xiaoqing
    Zhang, Hong
    Tian, Mei
    CANCER, 2022, 128 (14) : 2704 - 2716
  • [9] Translational molecular imaging: Thrombosis imaging with positron emission tomography
    Balmforth, Craig
    Whittington, Beth
    Tzolos, Evangelos
    Bing, Rong
    Williams, Michelle C.
    Clark, Laura
    Corral, Carlos Alcaide
    Tavares, Adriana
    Dweck, Marc Richard
    Newby, David Ernest
    JOURNAL OF NUCLEAR CARDIOLOGY, 2024, 39
  • [10] Clinical molecular imaging with positron emission tomography
    Salem, Azeem
    Charnley, Natalie
    Price, Pat
    EUROPEAN JOURNAL OF CANCER, 2006, 42 (12) : 1720 - 1727