CVT-Occ: Cost Volume Temporal Fusion for 3D Occupancy Prediction

被引:0
|
作者
Ye, Zhangchen [1 ]
Jiang, Tao [1 ,2 ]
Xu, Chenfeng [3 ]
Li, Yiming [4 ]
Zhao, Hang [1 ,2 ,5 ]
机构
[1] Tsinghua Univ, IIIS, Beijing, Peoples R China
[2] Shanghai AI Lab, Shanghai, Peoples R China
[3] Univ Calif Berkeley, Berkeley, CA USA
[4] NYU, New York, NY USA
[5] Shanghai Qi Zhi Inst, Shanghai, Peoples R China
来源
COMPUTER VISION - ECCV 2024, PT LXXIII | 2025年 / 15131卷
基金
国家重点研发计划;
关键词
3D Semantic Occupancy Prediction; Temporal Fusion; REPRESENTATION;
D O I
10.1007/978-3-031-73464-9_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Vision-based 3D occupancy prediction is significantly challenged by the inherent limitations of monocular vision in depth estimation. This paper introduces CVT-Occ, a novel approach that leverages temporal fusion through the geometric correspondence of voxels over time to improve the accuracy of 3D occupancy predictions. By sampling points along the line of sight of each voxel and integrating the features of these points from historical frames, we construct a cost volume feature map that refines current volume features for improved prediction outcomes. Our method takes advantage of parallax cues from historical observations and employs a data-driven approach to learn the cost volume. We validate the effectiveness of CVT-Occ through rigorous experiments on the Occ3D-Waymo dataset, where it outperforms state-of-the-art methods in 3D occupancy prediction with minimal additional computational cost. The code is released at https://github.com/Tsinghua-MARS-Lab/CVT-Occ.
引用
收藏
页码:381 / 397
页数:17
相关论文
共 50 条
  • [1] Co-Occ: Coupling Explicit Feature Fusion With Volume Rendering Regularization for Multi-Modal 3D Semantic Occupancy Prediction
    Pan, Jingyi
    Wang, Zipeng
    Wang, Lin
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (06): : 5687 - 5694
  • [2] Occ3D: A Large-Scale 3D Occupancy Prediction Benchmark for Autonomous Driving
    Tian, Xiaoyu
    Jiang, Tao
    Yun, Longfei
    Mao, Yucheng
    Yang, Huitong
    Wang, Yue
    Wang, Yilun
    Zhao, Hang
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [3] LinkOcc: 3D Semantic Occupancy Prediction With Temporal Association
    Ouyang, Wenzhe
    Xu, Zenglin
    Shen, Bin
    Wang, Jinghua
    Xu, Yong
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (02) : 1374 - 1384
  • [4] Fully Sparse 3D Occupancy Prediction
    Liu, Haisong
    Chen, Yang
    Wang, Haiguang
    Yang, Zetong
    Li, Tianyu
    Zeng, Jia
    Chen, Li
    Li, Hongyang
    Wang, Limin
    COMPUTER VISION - ECCV 2024, PT XXV, 2025, 15083 : 54 - 71
  • [5] COTR: Compact Occupancy TRansformer for Vision-based 3D Occupancy Prediction
    Ma, Qihang
    Tan, Xin
    Qu, Yanyun
    Ma, Lizhuang
    Zhang, Zhizhong
    Xie, Yuan
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2024, : 19936 - 19945
  • [6] Occ2Net: Robust Image Matching Based on 3D Occupancy Estimation for Occluded Regions
    Fan, Miao
    Chen, Mingrui
    Hu, Chen
    Zhou, Shuchang
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 9618 - 9628
  • [7] OctOcc: High-Resolution 3D Occupancy Prediction with Octree
    Ouyang, Wenzhe
    Song, Xiaolin
    Feng, Bailan
    Xu, Zenglin
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 5, 2024, : 4369 - 4377
  • [8] 3D LiDAR and Stereo Fusion using Stereo Matching Network with Conditional Cost Volume Normalization
    Wang, Tsun-Hsuan
    Hu, Hou-Ning
    Lin, Chieh Hubert
    Tsai, Yi-Hsuan
    Chiu, Wei-Chen
    Sun, Min
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 5895 - 5902
  • [9] MRI Volume Fusion Based on 3D Shearlet Decompositions
    Duan, Chang
    Wang, Shuai
    Wang, Xue Gang
    Huang, Qi Hong
    INTERNATIONAL JOURNAL OF BIOMEDICAL IMAGING, 2014, 2014 (2014)
  • [10] POP-3D: Open-Vocabulary 3D Occupancy Prediction from Images
    Vobecky, Antonin
    Simeoni, Oriane
    Hurych, David
    Gidaris, Spyros
    Bursuc, Andrei
    Perez, Patrick
    Sivic, Josef
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,