Large deviations for the largest eigenvalue of generalized sample covariance matrices

被引:0
作者
Husson, Jonathan [1 ]
Mc Kenna, Benjamin [2 ]
机构
[1] Univ Michigan, Michigan, ND 48109 USA
[2] Harvard Univ, Ctr Math Sci & Applicat, Cambridge, MA USA
基金
美国国家科学基金会;
关键词
large deviations; sample covariance matrices; Wishart matrices; deformed Wigner matrices; TRACY-WIDOM LIMIT; UNIVERSALITY; ASYMPTOTICS; PRINCIPLE; BOUNDS;
D O I
10.1214/24-EJP1228
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish a large-deviations principle for the largest eigenvalue of a generalized sample covariance matrix, meaning a matrix proportional to ZT Gamma Z, where Z has i.i.d. real or complex entries and Gamma is not necessarily the identity. We treat the classical case when Z is Gaussian and Gamma is positive definite, but we also cover two orthogonal extensions: Either the entries of Z can instead be sharp sub-Gaussian, a class including Rademacher and uniform distributions, where we find the same rate function as for the Gaussian model; or Gamma can have negative eigenvalues if Z remains Gaussian. The latter case confirms formulas of Maillard in the physics literature. We also apply our techniques to the largest eigenvalue of a deformed Wigner matrix, real or complex, where we upgrade previous large-deviations estimates to a full large-deviations principle. Finally, we remove several technical assumptions present in previous related works.
引用
收藏
页数:48
相关论文
共 40 条
[11]  
DEMBO A., 1998, LARGE DEVIATIONS TEC, V38, DOI [10.1007/978-1-4612-5320-4, DOI 10.1007/978-1-4612-5320-4]
[12]   Tracy-Widom limit for the largest eigenvalue of a large class of complex sample covariance matrices [J].
El Karoui, Noureddine .
ANNALS OF PROBABILITY, 2007, 35 (02) :663-714
[13]   RANDOM MATRICES WITH SLOW CORRELATION DECAY [J].
Erdos, Laszlo ;
Krueger, Torben ;
Schroeder, Dominik .
FORUM OF MATHEMATICS SIGMA, 2019, 7
[14]   TRACY-WIDOM AT EACH EDGE OF REAL COVARIANCE AND MANOVA ESTIMATORS [J].
Fan, Zhou ;
Johnstone, Iain M. .
ANNALS OF APPLIED PROBABILITY, 2022, 32 (04) :2967-3003
[15]   A Fourier view on the R-transform and related asymptotics of spherical integrals [J].
Guionnet, A ;
Maïda, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 222 (02) :435-490
[16]   Large deviations asymptotics for spherical integrals [J].
Guionnet, A ;
Zeitouni, O .
JOURNAL OF FUNCTIONAL ANALYSIS, 2002, 188 (02) :461-515
[17]   CONCENTRATION OF THE SPECTRAL MEASURE FOR LARGE MATRICES [J].
Guionnet, A. ;
Zeitouni, O. .
ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2000, 5 :119-136
[18]   Asymptotics of k dimensional spherical integrals and applications [J].
Guionnet, Alice ;
Husson, Jonathan .
ALEA-LATIN AMERICAN JOURNAL OF PROBABILITY AND MATHEMATICAL STATISTICS, 2022, 19 (01) :769-797
[19]   LARGE DEVIATIONS FOR THE LARGEST EIGENVALUE OF RADEMACHER MATRICES [J].
Guionnet, Alice ;
Husson, Jonathan .
ANNALS OF PROBABILITY, 2020, 48 (03) :1436-1465
[20]   Large deviations for the largest eigenvalue of the sum of two random matrices [J].
Guionnet, Alice ;
Maida, Mylene .
ELECTRONIC JOURNAL OF PROBABILITY, 2020, 25