Finite groups with sσ-quasinormal subgroups

被引:0
作者
Zhong, Xuecheng [1 ]
Li, Youxin [2 ]
Meng, Wei [3 ]
机构
[1] Guilin Univ Elect Technol, Sch Math & Comp Sci, Guilin 541002, Guangxi, Peoples R China
[2] Ctr Appl Math Guangxi GUET, Guilin 541002, Guangxi, Peoples R China
[3] Guangxi Coll & Univ Key Lab Data Anal & Computat, Guilin 541002, Guangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
s sigma-Quasinormal; p-nilpotent group; supersolvable group; minimal subgroups; MINIMAL SUBGROUPS;
D O I
10.1142/S0219498826501082
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a finite group and sigma = {sigma(i) | i is an element of I} be some partition of the set P of all primes. A set H of subgroups of G is said to be a complete Hall sigma-set of G if every member not equal 1 of H is a Hall sigma(i)-subgroup of G for some sigma(i) is an element of sigma and H contains exactly one Hall sigma(i)-subgroup of G for every sigma(i) is an element of sigma(G). A group G is said to be a sigma-full group if G possesses a complete Hall sigma-set. A subgroup H of G is said to be s sigma-quasinormal in G if there exists a sigma-full subgroup T of G such that G = HT and for all sigma(i) is an element of sigma(T), H permutes with every Hall sigma(i)-subgroup of T. In this paper, we main investigate finite groups all of whose cyclic subgroups of order 2 or 4 are s sigma-quasinormal subgroups. Some new criteria for p-nilpotency and supersolubilities are established.
引用
收藏
页数:8
相关论文
共 17 条
[1]  
Asaad M, 1996, COMMUN ALGEBRA, V24, P2771
[2]   The influence of minimal subgroups on the structure of finite groups [J].
Asaad, M ;
Csörgö, P .
ARCHIV DER MATHEMATIK, 1999, 72 (06) :401-404
[3]   FINITE GROUPS WHOSE MINIMAL SUBGROUPS ARE NORMAL [J].
BUCKLEY, J .
MATHEMATISCHE ZEITSCHRIFT, 1970, 116 (01) :15-&
[4]   Finite groups with some σ-primary subgroups sσ-quasinormal [J].
Cao, Chenchen ;
Wu, Zhenfeng .
COMMUNICATIONS IN ALGEBRA, 2020, 48 (12) :5501-5510
[5]   MINIMAL NICHT UBERAUFLOSBARE ENDLICHE GRUPPEN [J].
DOERK, K .
MATHEMATISCHE ZEITSCHRIFT, 1966, 91 (03) :198-&
[6]  
Guo WB, 2018, MONATSH MATH, V185, P443, DOI 10.1007/s00605-016-1007-9
[7]   Finite groups with permutable complete Wielandt sets of subgroups [J].
Guo, Wenbin ;
Skiba, Alexander N. .
JOURNAL OF GROUP THEORY, 2015, 18 (02) :191-200
[8]  
HUPPERT B, 1967, ENDLICHE GRUPPEN, V1
[9]   On SS-Quasinormal Subgroups of Finite Groups [J].
Li, Shirong ;
Shen, Zhencai ;
Kong, Xianghong .
COMMUNICATIONS IN ALGEBRA, 2008, 36 (12) :4436-4447
[10]  
LI SR, 1994, COMMUN ALGEBRA, V22, P1913