A Robust Visual SLAM System in Dynamic Environment

被引:0
|
作者
Ma, Huajun [1 ]
Qin, Yijun [1 ]
Duan, Shukai [1 ]
Wang, Lidan [1 ,2 ,3 ,4 ]
机构
[1] Southwest Univ, Coll Artificial Intelligence, Chongqing 400715, Peoples R China
[2] Natl & Local Joint Engn Res Ctr Intelligent Trans, Chongqing 400715, Peoples R China
[3] Chongqing Key Lab Brain Inspired Comp & Intellige, Chongqing 400715, Peoples R China
[4] Minist Educ, Key Lab Luminescence Anal & Mol Sensing, Chongqing 400715, Peoples R China
来源
ADVANCES IN NEURAL NETWORKS-ISNN 2024 | 2024年 / 14827卷
基金
中国国家自然科学基金;
关键词
Visual SLAM; Dynamic scene; Semantic segmentation;
D O I
10.1007/978-981-97-4399-5_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Simultaneous Localization and Mapping (SLAM) is vital for the navigation of autonomous robots in unknown environments. Current SLAM systems have made progress but still struggle to balance accuracy, robustness, and real-time processing in dynamic environments. This paper presents a visual SLAM system that, with the assistance of neural networks, significantly enhances localization accuracy in dynamic environments without compromising real-time performance. It utilizes a static feature point algorithm based on semantic information during feature extraction to isolate static from dynamic feature points for better tracking and integrates a fast feature point weight calculation algorithm that assesses feature reliability based on proximity to dynamic objects, which greatly enhances the initial camera pose. Moreover, a match detection algorithm removes incorrect match relationships during local map tracking, which boosts pose precision and system robustness. The experiments on the TUM datasets show our system's superior performance. Specifically, in the s/static data sequence, our system achieves over 51.9% improvement on the RPE RMSE metric, while other systems either do worse than ORB-SLAM3 or improve less than 26.4%. These results prove the robustness of our system.
引用
收藏
页码:248 / 257
页数:10
相关论文
共 50 条
  • [1] Robust Visual SLAM in Dynamic Environment Based on Motion Detection and Segmentation
    Yu, Xin
    Shen, Rulin
    Wu, Kang
    Lin, Zhi
    Journal of Autonomous Vehicles and Systems, 2024, 4 (01):
  • [2] DOA-SLAM: An Efficient Stereo Visual SLAM System in Dynamic Environment
    Zhaoqian Jia
    Yixiao Ma
    Junwen Lai
    Zhiguo Wang
    International Journal of Control, Automation and Systems, 2025, 23 (4) : 1181 - 1198
  • [3] Review of Visual SLAM in Dynamic Environment
    Wang K.
    Yao X.
    Huang Y.
    Liu M.
    Lu Y.
    Jiqiren/Robot, 2021, 43 (06): : 715 - 732
  • [4] Semantic visual SLAM in dynamic environment
    Wen, Shuhuan
    Li, Pengjiang
    Zhao, Yongjie
    Zhang, Hong
    Sun, Fuchun
    Wang, Zhe
    AUTONOMOUS ROBOTS, 2021, 45 (04) : 493 - 504
  • [5] Semantic visual SLAM in dynamic environment
    Shuhuan Wen
    Pengjiang Li
    Yongjie Zhao
    Hong Zhang
    Fuchun Sun
    Zhe Wang
    Autonomous Robots, 2021, 45 : 493 - 504
  • [6] A robust visual SLAM system in dynamic man-made environments
    LIU JiaCheng
    MENG ZiYang
    YOU Zheng
    Science China(Technological Sciences), 2020, (09) : 1628 - 1636
  • [7] A robust visual SLAM system in dynamic man-made environments
    LIU JiaCheng
    MENG ZiYang
    YOU Zheng
    Science China(Technological Sciences), 2020, 63 (09) : 1628 - 1636
  • [8] A robust visual SLAM system in dynamic man-made environments
    Liu, JiaCheng
    Meng, ZiYang
    You, Zheng
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (09) : 1628 - 1636
  • [9] A robust visual SLAM system in dynamic man-made environments
    JiaCheng Liu
    ZiYang Meng
    Zheng You
    Science China Technological Sciences, 2020, 63 : 1628 - 1636
  • [10] DFD-SLAM: Visual SLAM with Deep Features in Dynamic Environment
    Qian, Wei
    Peng, Jiansheng
    Zhang, Hongyu
    APPLIED SCIENCES-BASEL, 2024, 14 (11):