Probabilistic analysis and optimization of search algorithms

被引:0
作者
Kralchev, Dobromir Pavlov [1 ]
机构
[1] Sofia Univ St Kliment Ohridski, Fac Math & Informat, James Bourchier Blvd 5, Sofia 1164, Bulgaria
关键词
Stochastic search; backtracking; reflexive (self-monitoring) algorithms;
D O I
10.1142/S1793557124500761
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
An interesting phenomenon about search algorithms is theoretically explained. Exponential optimization of running times has been achieved: the bigger the input size, the greater the acceleration. The optimization is equally applicable to exhaustive search, backtracking, and stochastic search.
引用
收藏
页数:10
相关论文
共 6 条
[1]  
Dimov D., 2001, INT C AUT INF SOF MA
[2]  
Hooimeijer P., 2012, DISSERTATION
[3]  
Jain S., 2022, ARXIV, DOI DOI 10.48550/ARXIV.2206.07286
[4]   Solving Hard Computational Problems Efficiently: Asymptotic Parametric Complexity 3-Coloring Algorithm [J].
Martin H, Jose Antonio .
PLOS ONE, 2013, 8 (01)
[5]  
Mu ZX, 2015, PROCEEDINGS OF THE TWENTY-FOURTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI), P367
[6]  
Nobibon FT, 2010, LECT NOTES COMPUT SC, V6124, P229, DOI 10.1007/978-3-642-14355-7_24