GEODESIC VECTORS ON 5-DIMENSIONAL HOMOGENEOUS NILMANIFOLDS

被引:0
作者
Shanker, Gauree [1 ]
Kaur, Jaspreet [1 ]
Jangir, Seema [1 ]
机构
[1] Cent Univ Punjab, Dept Math & Stat, Bathinda 151401, Punjab, India
来源
MATEMATICKI VESNIK | 2024年 / 76卷 / 04期
关键词
Geodesic vectors; m- th root Finsler metric; quartic Finsler metric; nilpotent Lie groups; invariant metric; nilmanifolds;
D O I
10.57016/MV-YTVW3833
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, firstly we study geodesic vectors for the m-th root homogeneous Finsler space admitting (alpha, beta)-type. Then we obtain the necessary and sufficient condition for an arbitrary non-zero vector to be a geodesic vector for the m-th root homogeneous Finsler metric under mild conditions. Finally, we consider a quartic homogeneous Finsler metric on a simply connected nilmanifold of dimension five equipped with an invariant Riemannian metric and an invariant vector field. We study its geodesic vectors and classify the set of all the homogeneous geodesics on 5-dimensional nilmanifolds.
引用
收藏
页码:266 / 279
页数:14
相关论文
共 22 条
  • [1] ANTONELLI P. L., 1993, The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology
  • [2] Asanov G. S., 1984, Finslerian Extension of General Relativity
  • [3] Bahmandoust P., 2019, G.J.A.R.C.M.G, V8, P57
  • [4] Balan V., 2005, Hypercomplex Numbers Geom. Phys., P114
  • [5] Balan V, 2006, BALK J GEOM APPL, V11, P20
  • [6] CHERN S.-S., 2005, Nankai Tracts in Mathematics, V6
  • [7] DENG S., 2012, Springer Monographs in Mathematics
  • [8] Ebrahimi M., 2018, J.Phys. Sci., V23, P11
  • [9] Isometry classes of simply connected nilmanifolds
    Figula, Agota
    Nagy, Peter T.
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2018, 132 : 370 - 381
  • [10] Fischer V, 2016, PROG MATH, V314, P1, DOI 10.1007/978-3-319-29558-9