Bifurcation of double eigenvalues for Aharonov-Bohm operators with a moving pole

被引:1
作者
Abatangelo, Laura [1 ]
Felli, Veronica [2 ]
机构
[1] Politecn Milan, Dipartimento Matemat, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, Via Cozzi 55, I-20125 Milan, Italy
关键词
Aharonov-Bohm operators; Spectral theory; Asymptotics of eigenvalues; SCHRODINGER-OPERATORS; NODAL SETS;
D O I
10.1016/j.na.2025.113798
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study double eigenvalues of Aharonov-Bohm operators with Dirichlet boundary conditions in planar domains containing the origin. We focus on the behavior of double eigenvalues when the potential's circulation is a fixed half-integer number and the operator's pole is moving on straight lines in a neighborhood of the origin. We prove that bifurcation occurs if the pole is moving along straight lines in a certain number of cones with positive measure. More precise information is given for symmetric domains; in particular, in the special case of the disk, any eigenvalue is double if the pole is located at the center, but there exists a whole neighborhood where it bifurcates into two distinct branches.
引用
收藏
页数:22
相关论文
共 27 条
[1]   Ramification of multiple eigenvalues for the Dirichlet-Laplacian in perforated domains [J].
Abatangelo, Laura ;
Lena, Corentin ;
Musolino, Paolo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (12)
[2]   Spectral stability under removal of small capacity sets and applications to Aharonov-Bohm operators [J].
Abatangelo, Laura ;
Felli, Veronica ;
Hillairet, Luc ;
Lena, Corentin .
JOURNAL OF SPECTRAL THEORY, 2019, 9 (02) :379-427
[4]   ESTIMATES FOR EIGENVALUES OF AHARONOV-BOHM OPERATORS WITH VARYING POLES AND NON-HALF-INTEGER CIRCULATION [J].
Abatangelo, Laura ;
Felli, Veronica ;
Noris, Benedetta ;
Nys, Manon .
ANALYSIS & PDE, 2018, 11 (07) :1741-1785
[5]   On multiple eigenvalues for Aharonov-Bohm operators in planar domains [J].
Abatangelo, Laura ;
Nys, Manon .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2018, 169 :1-37
[6]   ON THE LEADING TERM OF THE EIGENVALUE VARIATION FOR AHARONOV BOHM OPERATORS WITH A MOVING POLE [J].
Abatangelo, Laura ;
Felli, Veronica .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (04) :2843-2868
[7]   Sharp asymptotic estimates for eigenvalues of Aharonov-Bohm operators with varying poles [J].
Abatangelo, Laura ;
Felli, Veronica .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (04) :3857-3903
[8]   On the Aharonov-Bohm Hamiltonian [J].
Adami, R ;
Teta, A .
LETTERS IN MATHEMATICAL PHYSICS, 1998, 43 (01) :43-53
[9]   SIGNIFICANCE OF ELECTROMAGNETIC POTENTIALS IN THE QUANTUM THEORY [J].
AHARONOV, Y ;
BOHM, D .
PHYSICAL REVIEW, 1959, 115 (03) :485-491
[10]   Numerical Analysis of Nodal Sets for Eigenvalues of Aharonov-Bohm Hamiltonians on the Square with Application to Minimal Partitions [J].
Bonnaillie-Noel, V. ;
Helffer, B. .
EXPERIMENTAL MATHEMATICS, 2011, 20 (03) :304-322