Greedy Sidon sets for linear forms

被引:0
作者
Cheng, Yin Choi [1 ]
机构
[1] CUNY, Grad Ctr, Dept Math, New York, NY 10017 USA
关键词
Sidon sets; Linear forms; Greedy algorithm; Mian-Chowla; NUMBER;
D O I
10.1016/j.jnt.2024.07.010
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The greedy Sidon set, also known as the Mian-Chowla sequence, is the lexicographically first set in N that does not contain x(1), x(2), y(1), y(2) with x(1 )+ x(2) = y(1 )+ y(2). Its growth and structure have remained enigmatic for 80 years. In this work, we study a generalization from the form x(1)+x(2) to arbitrary linear forms c(1)x(1 )+ & mldr; + c(h)x(h); these are called Sidon sets for linear forms. We explicitly describe the elements of the greedy Sidon sets for linear forms when c(i) = n(i-1) for some n >= 2, and also when h = 2, c(1 )= 2, c(2 )>= 4, the "structured" domain. We also contrast the "enigmatic" domain when h = 2, c(1) = 2, c(2 )= 3 with the "structured" domain, and give upper bounds on the growth rates in both cases. (c) 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:225 / 248
页数:24
相关论文
共 24 条
[1]  
[Anonymous], 2023, Entry A001107 in The On-Line Encyclopedia of Integer Sequences
[2]  
[Anonymous], 2023, Entry A005282 in The On-Line Encyclopedia of Integer Sequences
[3]  
Balogh J, 2021, Arxiv, DOI arXiv:2103.15850
[4]   On the number of generalized Sidon sets [J].
Balogh, Jozsef ;
Li, Lina .
ACTA SCIENTIARUM MATHEMATICARUM, 2021, 87 (1-2) :3-21
[5]   Sidon set systems [J].
Cilleruelo, Javier ;
Serra, Oriol ;
Wotzel, Maximilian .
REVISTA MATEMATICA IBEROAMERICANA, 2020, 36 (05) :1527-1548
[6]   Sidon sets in Nd [J].
Cilleruelo, Javier .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 2010, 117 (07) :857-871
[7]  
ERDOS P, 1941, J LOND MATH SOC, V16, P212, DOI DOI 10.1112/JLMS/S1-16.4.212
[8]  
Finch S.R, 2003, Mathematical constants
[9]  
Gurgand L., 2023, arXiv, DOI [DOI 10.31234/OSF.IO/QE42Z, DOI 10.31234/OSF.IO/B6P8D]
[10]  
Jia X.D., 1988, Qufu Shifan Daxue Xuebao Ziran Kexue Ban, V14, P12