From Neural Networks to Emotional Networks: A Systematic Review of EEG-Based Emotion Recognition in Cognitive Neuroscience and Real-World Applications

被引:2
|
作者
Gkintoni, Evgenia [1 ]
Aroutzidis, Anthimos [2 ]
Antonopoulou, Hera [2 ]
Halkiopoulos, Constantinos [2 ]
机构
[1] Univ Patras, Dept Educ Sci & Social Work, Patras 26504, Greece
[2] Univ Patras, Dept Management Sci & Technol, Patras 26334, Greece
关键词
EEG; Emotion Recognition; Neural Networks; Cognitive Neuroscience; Machine Learning; Convolutional Neural Networks (CNNs); Recurrent Neural Networks (RNNs); Human-Computer Interaction; Real-World Applications; Affective Neuroscience; DIRECT-CURRENT STIMULATION; FRONTAL EEG; NEUROFEEDBACK; MODULATION; INTERVENTION; CONNECTIVITY; REAPPRAISAL; BIOFEEDBACK; SALIENCE; STRESS;
D O I
10.3390/brainsci15030220
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Background/Objectives: This systematic review presents how neural and emotional networks are integrated into EEG-based emotion recognition, bridging the gap between cognitive neuroscience and practical applications. Methods: Following PRISMA, 64 studies were reviewed that outlined the latest feature extraction and classification developments using deep learning models such as CNNs and RNNs. Results: Indeed, the findings showed that the multimodal approaches were practical, especially the combinations involving EEG with physiological signals, thus improving the accuracy of classification, even surpassing 90% in some studies. Key signal processing techniques used during this process include spectral features, connectivity analysis, and frontal asymmetry detection, which helped enhance the performance of recognition. Despite these advances, challenges remain more significant in real-time EEG processing, where a trade-off between accuracy and computational efficiency limits practical implementation. High computational cost is prohibitive to the use of deep learning models in real-world applications, therefore indicating a need for the development and application of optimization techniques. Aside from this, the significant obstacles are inconsistency in labeling emotions, variation in experimental protocols, and the use of non-standardized datasets regarding the generalizability of EEG-based emotion recognition systems. Discussion: These challenges include developing adaptive, real-time processing algorithms, integrating EEG with other inputs like facial expressions and physiological sensors, and a need for standardized protocols for emotion elicitation and classification. Further, related ethical issues with respect to privacy, data security, and machine learning model biases need to be much more proclaimed to responsibly apply research on emotions to areas such as healthcare, human-computer interaction, and marketing. Conclusions: This review provides critical insight into and suggestions for further development in the field of EEG-based emotion recognition toward more robust, scalable, and ethical applications by consolidating current methodologies and identifying their key limitations.
引用
收藏
页数:74
相关论文
共 50 条
  • [1] EEGNetT: EEG-based neural network for emotion recognition in real-world applications
    Zhu, Yuxuan
    Ozawa, Kenji
    Kong, Wanzeng
    2021 IEEE 3RD GLOBAL CONFERENCE ON LIFE SCIENCES AND TECHNOLOGIES (IEEE LIFETECH 2021), 2021, : 376 - 378
  • [2] EEG-based emotion recognition with deep convolutional neural networks
    Ozdemir, Mehmet Akif
    Degirmenci, Murside
    Izci, Elf
    Akan, Aydin
    BIOMEDICAL ENGINEERING-BIOMEDIZINISCHE TECHNIK, 2021, 66 (01): : 43 - 57
  • [3] Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition
    Jinpeng Li
    Zhaoxiang Zhang
    Huiguang He
    Cognitive Computation, 2018, 10 : 368 - 380
  • [4] Bayesian Graph Neural Networks for EEG-Based Emotion Recognition
    Chen, Jianhui
    Qian, Hui
    Gong, Xiaoliang
    CLINICAL IMAGE-BASED PROCEDURES, DISTRIBUTED AND COLLABORATIVE LEARNING, ARTIFICIAL INTELLIGENCE FOR COMBATING COVID-19 AND SECURE AND PRIVACY-PRESERVING MACHINE LEARNING, CLIP 2021, DCL 2021, LL-COVID19 2021, PPML 2021, 2021, 12969 : 24 - 33
  • [5] Hierarchical Convolutional Neural Networks for EEG-Based Emotion Recognition
    Li, Jinpeng
    Zhang, Zhaoxiang
    He, Huiguang
    COGNITIVE COMPUTATION, 2018, 10 (02) : 368 - 380
  • [6] EEG-Based Emotion Recognition Using Regularized Graph Neural Networks
    Zhong, Peixiang
    Wang, Di
    Miao, Chunyan
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2022, 13 (03) : 1290 - 1301
  • [7] EEG-based emotion recognition with cascaded convolutional recurrent neural networks
    Ming Meng
    Yu Zhang
    Yuliang Ma
    Yunyuan Gao
    Wanzeng Kong
    Pattern Analysis and Applications, 2023, 26 : 783 - 795
  • [8] EEG-based emotion recognition with cascaded convolutional recurrent neural networks
    Meng, Ming
    Zhang, Yu
    Ma, Yuliang
    Gao, Yunyuan
    Kong, Wanzeng
    PATTERN ANALYSIS AND APPLICATIONS, 2023, 26 (02) : 783 - 795
  • [9] EEG-based emotion recognition using random Convolutional Neural Networks
    Cheng, Wen Xin
    Gao, Ruobin
    Suganthan, P. N.
    Yuen, Kum Fai
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 116
  • [10] EEG-based Emotion Recognition with Feature Fusion Networks
    Gao, Qiang
    Yang, Yi
    Kang, Qiaoju
    Tian, Zekun
    Song, Yu
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (02) : 421 - 429